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1100 P. R. Masani

Rp with values in the Hilbert space L2 := L2(Ω,A,P;R), these values being non-
Gaussian random variables with complicated covariance structure.

In the current treatments, due to Kakutani, Ito, Segal, Gross and their followers, an
important part of this theory is recovered, even though the measure ξp itself and the
difficult questions of its countable additivity, semi-variation, covariance, integration,
etc., are bypassed. Missed in such an approach, however, are interesting, difficult and
highly combinatorial results, the embryonic forms of which appear in Wiener’s later
writings.

In this paper we face the measure ξp head on, adhering strictly to the canons of
the Lebesgue–Pettis theory of Banach-space valued measures and their integration.
A fundamental clue is provided by the equality (75) in Wiener’s paper, which is
conspicuously missing in the treatments in vogue. Our treatment is coordinate-free:
bases are introduced only in the last section in order to establish a nexus with the
important work of Cameron & Martin, from which the cited authors take off.

An unexpected bonus is that a combinatorial result, pertaining to integrability
with respect to the measure ξp, completely resolves the difficult problem of liftings
that has appeared in the Hu–Meyer treatment of the Feynman integral.

1. Introduction

(a ) On infinite-dimensional vector-valued measures
The subject of infinite-dimensional vector-valued measures has gained substantially
from two path-breaking contributions of Norbert Wiener. In the first of these, Wiener
(1923), he introduced a probability measure on the space of paths of an idealized
version of Einstein’s Brownian motion process, and thereby made possible the de-
marcation of a countably additive measure ξ with values in the Hilbert space L2[0, 1],
with the potent property that its total variation measure1 |ξ| has exactly the values
0 and ∞, i.e.

Range |ξ| = {0,∞}.(1)
This ξ is obtained by extension, starting from its definition for intervals, which is

∀a, b ∈ R & ∀α ∈ [0, 1], ξ(a, b](α) := x(b, α)− x(a, α),(2)

where {x(t, α) : t ∈ R and α ∈ [0, 1]} is Wiener’s idealized Brownian motion stochas-
tic process (SP) over the probability space [0,1] with Lebesgue measure.

In the early 1930s the integration of scalar functions φ with respect to this ξ was
defined by Paley & Wiener (1934, pp. 151–156) by a judicious recourse to integration
by parts, defined more directly by Doob (1953, pp. 426–429), and following Doob’s
footsteps for all ξ with values in an arbitrary Hilbert space H, which obey the
requirement

(ξ(A), ξ(B))H = µ(A ∩B) > 0(3)
by this writer (Masani 1968). For Wiener’s ξ, H is L2[0, 1] and µ is the Lebesgue
measure `1 over R.

The more general integration of φ with respect to a measure ξ with values in a

1 The total variation measure |ξ| is defined exactly as for complex-valued measures, except for using
the L2[0, 1] norm instead of the absolute value.
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Homogeneous chaos 1101

Banach space X , was begun by N. Dunford and his colleagues in the mid-1950s,
was simplified and systematized in the 1970s and 1980s in several papers by D. R.
Lewis, E. G. F. Thomas, J. K. Brooks and N. Dinculeanu and by H. Niemi and the
writer. Of these papers we need only mention the ones we will use, namely Brooks
(1971), Brooks & Dinculeanu (1974) and Masani & Niemi (1989a, b, 1992, cited as
[MN,I,II,III] in the sequel). A Fubini theorem for the product measure ξ × µ, where
µ is scalar-valued, shows that the completion of the theory requires consideration
of the integration of vector-valued functions ~f with respect to the scalar measure
µ [MN,III,9.7]. Such integration had been broached much earlier in the 1930s and
1940s by S. Bochner, J. R. Pettis, N. Dunford, G. Birkhoff, R. S. Phillips, and their
followers in several important papers.

We could dispense with integrals of the type
∫
R φ(t)ξ(dt) in favour of those of the

type
∫
R
~f(t)µ(dt), were a substitution principle such as∫

R
φ(t)ξ(dt) =

∫
R
φ(t)

dξ
d|ξ|(t)|ξ|(dt)

available. But such a principle is ruled out by the stipulation (1). Thus for all ξ
subject to (1), the integration

∫
R φ(t)ξ(dt) is intrinsic. Furthermore, many such ξ

admit the implication∫
R
φ(t)ξ(dt) =

∫
R
ψ(t)ξ(dt) =⇒ φ(t) = ψ(t) a.e.,

reminiscent of the familiar condition for linear independence of a sequence of vectors
(x1, . . . , xn), namely,

n∑
k=1

akxk =
n∑
k=1

bkxk =⇒ ∀k = 1, 2, . . . , n, ak = bk.

Thus we ought to look upon many vector measures ξ, subject to (1), as ‘continuous’
basis for the Hilbert or Banach space in question, made up of ‘infinitesimal’ vectors
ξ(dt), and should look upon equalities such as

x =
∫
R
φ(t)ξ(dt)

as ‘expansions’ of the vector x in terms of such ‘measure basis’.
In Wiener (1938, subsequently cited as [W]), came his second path-breaking con-

tribution to the field. He introduced the p-fold product ξp of his original measure
given in (2), and defined for A = (a1, b1]× · · · × (ap, bp] by the product,

ξp(A) = ξ(a1, b1]··· · · · ···ξ(a1, b1].(4)

The p factors on the RHS are normally distributed random variables with zero means,
which are not necessarily independent. It is easily seen that while ξp(A) is in L2[0, 1],
it is not normally distributed and not subject to a condition of the type (3).

That the study of ξp transcends the vector measure theory currently in existence
is clear from the fact that this theory is confined to measures with values in a vector
space and not in a linear algebra, whereas for the 1938 Wiener measure ξp, it is the
multiplication of vectors that is crucial. Moreover, an extension of the current theory
of Banach space valued measures to Banach algebra valued measures will not meet
the demands of Wiener’s measure ξp, since the L2-norm, relevant to its theory, is not
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1102 P. R. Masani

a Banach algebra norm; indeed for non-independent normally distributed random
variables X, Y , we find that |X · Y |L2 > |X|L2 · |Y |L2 . Here L2 = L2[0, 1]. (This is a
trivial consequence of the lemma 2.1 on normal variates.)

Had Wiener taken the easy way, and defined ξp(A) not by (4), but by the corre-
sponding tensor product

ξp(A) = ξ(a1, b1]⊗ · · · ⊗ ξ(ap, bp],
all these difficulties would have vanished. For this ξp has values in the Hilbert space
{L2[0, 1]}⊗p ' L2{[0, 1]p}, and obeys the simple equality (3) in the form,

(ξp(A), ξp(B))L2{[0,1]p} = `p(A ∩B),

where `p is the Lebesgue measure over Rp. But such an escape into Fock space would
have left out the solid crust of Wiener’s theory which rests on sticking to just one
Hilbert space, L2[0, 1], for all p ∈ N+.

(b ) The purpose of this paper
Our objective is to deal systematically and rigorously with the p-fold product

measures ξp = ξ × ξ × · · · × ξ appearing on the left side of (4) and their integration,
by adhering strictly to the Lebesgue pattern outlined in the definitions (A.1), (A.9),
(A.10), (A.12), (A.14), (A.25) and (A.26) of Appendix A. In this a measure ρ with
values in a topological vector space X comes first, a [0,∞]-valued ρ-norm |f |1,ρ of
measurable functions f comes next, then the class G1,ρ of ρ-integrable functions is
defined by the condition |f |1,ρ < ∞, the class2 P1,ρ emerging as the closure of the
simple functions, and finally comes integration, defined as a linear operator Eρ on
the vector space P1,ρ to the original vector space X . In our case, X is a Hilbert space,
and P1,ρ = G1,ρ.

We have to cope with the new questions that arise from the inhering multiplication.
One such, which demands early attention, is the determination of the inner product
(ξp(A), ξq(B))L2 in terms of familiar scalar measures, in the spirit of the equation
(3). This, and corresponding questions for integrals, are beset by severe combinatorial
complexities, to handle which we have had to work out a scheme of combinatorial
concepts. This has contributed to the extreme length and difficulty of this paper.3

(c ) Basic notation used in the paper
In order to demarcate the issues involved, and describe clearly the new results, we

must now prescribe the basic notation to be used.

1.1. Basic Notation.
(a) The symbols ∀ and ∃ stand for the universal and existential quantifiers. LHS

and RHS abbreviate left-hand side and right-hand side, respectively. The symbol :=
means equal by definition. For any set A, #(A) denotes the cardinality of A, and χA
the indicator function of A. Rstr.A f stands for the restriction of the function f to a
subset A of its domain. The symbol ‖ means disjoint.

(b) F refers to either the real or complex number fields R or C, and N to the set of

2 G, P in honour of Gelfand and Pettis, since functionals in X ′, the dual of X , which they use, play
an intrinsic role in yielding the norm |f |1,ρ, apart from which the theory is Lebesgue in spirit.

3 The writer is most grateful to the Royal Society for accepting its publication, and to Professor
C. R. Rao, F.R.S., for communicating it, and to the referee for his very careful comments. He regrets
not having the paper ready for publication in 1994, the centenary of Wiener’s birth.
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all integers. R+, N+ and R0+, N0+ denote the subsets of positive elements and the
subsets of non-negative elements of R and N, respectively.

(c) The symbols (a, b], [a, b], etc., where a, b ∈ R and a 6 b, denote the half-open
closed, closed, etc., intervals of R. However, when m,n ∈ N and m 6 n, we shall
write [m,n] for the set {m,m+ 1,m+ 2, . . . , n} ⊆ N.

(d) For p ∈ N+, the space Rp is defined by

Rp := R[1,p] := {x : x is a function on [1, p] to R}.
We let

R0 := {0} ⊂ R.
The symbol (a, b, . . . , `) with 12 terms, where a, b, . . . , ` ∈ R, will stand for the
function x ∈ R12 such that

x(1) = a, x(2) = b, . . . , x(12) = `.

(e) For ∅ 6= F ⊆ 2X and ∅ 6= G ⊆ 2Y , M(F ,G) is the set of all f in Y X , which
are F , G measurable, i.e. f−1(G) ∈ F for each G ∈ G. S (F ,R) is the class of all
R-valued F simple functions on X.

(f) For topological vector spaces X and Y , and A ⊆ X, 〈A〉 is the linear manifold
spanned by A in X, and S(A) := cls〈A〉 where ‘cls’ stands for ‘the closure of’.
L(X,Y ) is the class of all linear operators on X into Y , and CL(X,Y ) is the set of
continuous linear operators on X into Y .

(g) For Y0 ⊆ Y a vector space, and R a ring of subsets of a set Ω, FA(R, Y0)
and CA(R, Y0) stand for the sets of all finitely additive and of all countably additive
measures ξ on R with values in Y0. The symbols ‘FA’ and ‘CA’ abbreviate ‘finitely
additive’ and ‘countably additive’. Mξ := 〈Range ξ〉 and Sξ := S{Range ξ}. (Thus
M⊆ clsMξ = Sξ ⊆ clsY0.) σ-alg(F) is the σ-algebra generated by the family F of
subsets of a set X; likewise for a σ-ring(F), δ-ring(F), etc.

(h) For any measure ξ on a set-family F over a space Λ, and any integrable
function f on Λ, we shall write Eξ(f) for the (Lebesgue or Lebesgue–Pettis) integral∫

Λ f(λ)ξ (dλ), which is defined precisely in Appendix A.
(i) ∀p ∈ N0+, α2p := (2p)!/2p · p!. Thus

α0 = 1 & ∀p ∈ N, α2p = (2p− 1) · (2p− 3) · · · 3 · 1.(1.2)

The α2p increase very rapidly: α0 = α2 = 1, α4 = 3, α6 = 15, α8 = 105, α10 = 945,
. . . .

(d ) Wiener’s p-homogeneous chaotic measure
We must first comment on the simpler and more basic random variable-valued

measure ξ over R given by (2), the p-fold product of which constitutes the measure
ξp under investigation. To adopt a more general setting, let

Λ be a locally compact additive abelian (l.c.a.) group;
D be the δ-ring of a Borel subsets D ⊆ Λ with compact closures;
Dloc := {A : A ⊆ Λ & ∀D ∈ D, A ∩D ∈ D};
` be the Haar measure on D; thus ` ∈ CA(D,R0+);
(Ω,A,P) be a probability space and L2 := L2(Ω,A,P;R).

(1.3)

As Kakutani (1961, p. 241, ex. 2), has observed, one can define a Λ-analogue on D
Phil. Trans. R. Soc. Lond. A (1997)
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1104 P. R. Masani

of the extension of the random measure over R defined by (2) in terms of Wiener’s
Brownian motion SP, as follows:

1.4. Definition. Let (i) Λ, D, `, (Ω,A,P) and L2 be as in (1.3). We say that ρ is the
Brownian motion random measure (BMRM) on D with probability space (Ω,A,P), if
and only if

(a) ∀D ∈ D, ρ(D) is a R-valued, normally distributed random variable on (Ω,A,P)
with mean 0 and variance `(D);

(b) ρ is finitely additive on D;
(c) ρ is independently scattered, i.e.

∀n ∈ N+ and ∀‖D1, . . . , Dn ∈ D, ρ(D1), . . . , ρ(Dn)

are stochastically independent.

The existence of this BMRM is easy to show once the concepts of a Gaussian
system and Gaussian subspace, due to Kakutani (1961), are demarcated:

1.5. Definition. Let (Ω,A,P) and L2 be as in (1.3). Then
(a) G is called a Gaussian system, if and only if G ⊂ L2, and every finite linear

combination of vectors in G is normally distributed;
(b) G is called a Gaussian subspace of L2, if and only if (i) G is a closed linear

subspace of L2, and (ii) each random variable x(·) in G is normally distributed.

Since Gaussian systems are independent if and only if they are uncorrelated, the
notions of ‘independently scattered’ (IS) and ‘orthogonally scattered’ (OS) measures
coincide for zero means; and using the known result on equivalence of OS measures
(cf. Masani 1968, 1.8), and the disjoint normal form for sets, we get the following
lemma on equivalence:

1.6. Lemma. With the notation of (1.3), ρ is the BMRM on D with probability
space (Ω,A,P), in the sense of 1.4, if and only if (i) {ρ(D) : D ∈ D} is a Gaussian
system and each ξ(D) has mean 0, and (ii) ρ ∈ CAOS(D,L2), i.e.

ρ ∈ CA(D,L2) & ∀D,E ∈ D, (ρ(D), ρ(E))L2 = `(D ∩ E).

It follows from a theorem of Doob (1953, p. 72), that{
∀ cardinal numbers α, ∃ a probability space (Ω,A,P) & ∃ a Gaussian
subspace G of L2 such that dimG = α & ∀y ∈ G, EP(y) = 0.

(1.7)

1.8. Proposition. (Existence of BMRM) Let Λ, D, ` be as in (1.3). Then ∃ a
probability space (Ω,A,P) and ∃ a BMRM ρ on D with probability space (Ω,A,P).

Proof. Following Kahane (1968, pp. 154–155), let H := L2(Λ,D, `;R) and α :=
dimH. By (1.7), ∃(Ω,A,P) and ∃ a Gaussian subspace G ⊆ L2 = L2(Ω,A,P;R) such
that dimG = α and ∀y ∈ G, EP(y) = 0. Let V be any linear isometry on H onto G,
and define ∀D ∈ D, ρ(D) := V (χD). Then obviously {ρ(D) : D ∈ D} is a Gaussian
system, ρ(·) is CA on D, and

∀D,E ∈ D, (ρ(D), ρ(E))L2 = (χD, χE)H = `(D ∩ E).

Finally, EP{ρ(D)} = 0. Hence, by lemma 1.6, ρ is the desired BMRM.

The fact that the BMRM ρ(·) is CAOS makes the theory of the integration Eρ
Phil. Trans. R. Soc. Lond. A (1997)
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especially simple and elegant. The fact that the control measure ` of ρ is Haar,
makes (cf. Masani 1968, §7) ρ a stationary measure in the sense of Masani (1983,
def. 2.3(c)).

The hierarchy of measures ξp, p ∈ N+, that is latent in Wiener’s paper [W], can be
developed by starting from a BMRM ξ over any l.c.a. group Λ. The resulting theory
is in essence the same as the one based on Λ = R, that Wiener considered in [W]
and which we shall follow in the paper. The following notation is germane to this
R-based theory:

1.9. Notation. (Set families over Rp, for p ∈ N+.)

Dp := the δ-ring of bounded Borel subsets of Rp,
Bp := the σ-ring of Borel subsets of Rp (a σ-algebra),

Pp :=
{ p×

i=1
P i : P i ∈ D1

}
is the pre-ring of D1-edged intervals,

∀F ⊆ 2R
p

, F sym = {F : F ∈ F and F is symmetric}
(thus we shall have Dsym

p , Bsym
p , Psym

p ),

`p := the Lebesgue measure on Dp,
D̄p := {B : B ∈ Dloc

p & |`p|(B) <∞}.1

Whereas P1 = D1 is a δ-ring over R, for p > 2, Pp is only a pre-ring, namely, the
pre-ring of intervals P in Rp, the edges P i of which are bounded Borel subsets of R.
Obviously,

Pp ⊆ Dp ⊆ D̄p = a δ-ring ⊆ Bp = (Dp)loc.

Let

∀p ∈ N+, Rp := ring(Pp) = the ring generated by Pp.(1.10)

It is well known (see, for example, [MN, I, triv. A.4(a)]) that

∀p ∈ N+, δ-ring(Pp) = δ-ring(Rp) = Dp.(1.11)

Now let ξ be the Brownian motion random measure over R, cf. 1.4. Then by lemma
1.8, 

∀D ∈ D1, ξ(D) ∈ L2 is normally distributed
with mean 0 and variance `1(D),

ξ is CA on D1 & ∀D,E ∈ D1, (ξ(D), ξ(E)) = `1(D ∩ E).

(1.12)

Briefly,

ξ ∈ CAOS(D1,L2) & EP{ξ(·)} = 0 on D1.

The pth measure underlying Wiener’s theory is defined to be the ξp whose value at
the p-dimensional interval P := P 1×· · ·×P p, where P k ∈ D1, is the random variable

4 The natural domain of a vector measure ρ is a δ-ring D, but the natural domains of the quasi-, semi-
and total-variations are the σ-algebra Dloc of (1.3). It is convenient to maintain this distinction between
measure and total variation even for non-negative real-valued measures such as `p. Thus |`p| is defined
on Bp and for B ∈ Bp, |`p|(B) = supD∈Dp `p(B ∩D) ∈ [0,∞]. Obviously, `p ⊆ |`p| ∈ CA(Bp, [0,∞]).
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having at each ω ∈ Ω the value

ξp(P )(ω) :=
p∏
k=1

{ξ(P k)}(ω).(1.13)

Since normally distributed random variables have moments of all orders, it is easy
to see that ξp(P ) ∈ L2, and that, in fact,

ξp ∈ FA(Pp,L2).(1.14)

In our approach the key to the understanding of the FA measures ξp lies in first
finding their cross-covariance, i.e. in answering the following question:

1.15. Question. Let p, q ∈ N+, D ∈ Dp & E ∈ Dq. Then how is the RHS of the
cross-covariance formula

(ξp(D), ξq(E))L2 = · · · · ·
to be completed in terms of familiar scalar measures?

This question has to be answered first for intervals D, E in Pp, Pq, respectively,
and then for sets in the rings Rp, Rq. This done, and the standard conditions for
countable-additivity and extendibility having been shown, we must answer the ques-
tion for arbitrary D and E in Dp and Dq, respectively.

(e ) On Wiener’s equality [W, (75)]
The key to answering Question 1.15 lies in the systematic and extended utilization

of the equality (75) which Wiener gave in [W] for the expectation of the product
ξ(A1) · ξ(A2) · · · ξ(A2n), where ξ is the BMRM over R, and A1, . . . , A2n ∈ D1. In
reading Wiener’s words, note that P is his symbol for the BMRM over R, and Σi

are his sets in D1 and his (Ω,B,P) is [0,1] with Lebesgue measure; thus his P(Σi, α)
is our ξ(Ai)(ω). Wiener wrote:

Remembering that if S1, S2, . . . , S2n are non-overlapping, their distributions
are independent, we see that if the sets Σ1,Σ2, . . . ,Σ2n are either totally non-
overlapping, or else such that when two overlap, they coincide, we have∫ 1

0
P(Σ1;α) · · · P(Σ2n;α) dα =

∑∏∫ 1

0
P(Σj ;α)P(Σk;α) dα,(75)

where the product sign indicates that the 2n terms are divided into n sets of
pairs, j and k, and that these factors are multiplied together, while the addition
is over all the partitions of 1, . . . , 2n into pairs. If 2n is replaced by 2n+ 1, the
integral in (75) of course vanishes.

Since P(S;α) is a linear functional of sets of points, and since both sides of
(75) are linear with respect to each P(Σk;α) separately, (75) still holds when
Σ1,Σ2, . . . ,Σ2n can be reduced to sums of sets which either coincide or do not
overlap, and hence holds for all measurable sets.

([W, p. 917]; emphasis added)5

In this the crucial idea is that of ‘partitioning 2n terms into pairs’. It is a remarkably
deep and resilient idea, which works even for a body E in Rp, such as an ellipsoid,

5 Wiener’s use of the term ‘functional’ becomes intelligible on noting that it was his habit to switch
(without warning) from P(Σi;α) to the equivalent formulation {EP (χΣi )}(α).
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once meaningful entities Eij canonically associated with E and the pairs (i, j) are
demarcated. Its systematic analysis requires the following notation:

1.16. Notation. (Binary-celled partitions)
(a) ∀k ∈ N+, and all non-void sets M of even cardinality 2k,

ΠM := {π : π is a partition of M into binary cells}; Π∅ := {∅};
(b) the cells ∆ of π in ΠM will be so numbered:

π = {∆1,∆2, . . . ,∆k}, that ∀α ∈ [1, k − 1], min ∆α 6 min ∆α+1;

(c) ∀π ∈ ΠM , ∗π := {min ∆ : ∆ ∈ π}, π∗ := {max ∆ : ∆ ∈ π};
∗∅ := ∅ =: ∅∗;

(d) ∀p ∈ N+ & ∀k ∈ [1, [p/2]],

Π p
k :=

⋃
M⊆[1,p]
#M=2k

ΠM ;

thus ∀k ∈ [0, [p/2]], Π p
k is the class of all binary-celled partitions of all subsets of

[1, p] of cardinality 2k;
(e) ∀p ∈ N+, ∀k ∈ [1, [p/2]] and ∀π ∈ Π p

k ,

Mπ :=
⋃

∆∈π
∆, M ′π := [1, p]\Mπ.

Simple combinatory considerations show that with the notation 1.1(i),

∀p ∈ N+,∀k ∈ [0, [p/2]] & ∀π ∈ Π p
k , #π = k,

∀q ∈ N+, Π p
k ⊆ Π p+q

k & ∀ even p ∈ N+, Π p
p/2 = Π[1,p],

∀k ∈ N0+, #M = 2k =⇒ #ΠM = α2k; #Π p
k =

(
p

2k

)
α2k,

∀p ∈ N+, Π p
0 = {∅}; in particular Π 1

0 = {∅}.

(1.17)

With this notation Wiener’s equality (75) can be rendered as follows:

1.18. Theorem. (Wiener’s equality, form 1) Let n ∈ N+ and A1, . . . , An ∈ D1.
Then, cf. 1.1(h),

(a) for n odd,
EP
{ n∏
i=1

ξ(Ai)
}

= 0;

(b) for n even = 2r,

EP
{ 2r∏
i=1

ξ(Ai)
}

=
∑

π∈Π[1,2r]

∏
∆∈π

(ξ(Amin ∆), ξ(Amax ∆))L2 .

Proof. A proof along the lines Wiener indicated in [W], is given in §2.

In terms of the measures ξp, theorem 1.18 reduces to:

1.19. Corollary. (The expectation of ξp on Pp) Let p ∈ N+ and P := P 1 ×
· · · × P p ∈ Pp. Then
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(a) for odd p, EP{ξp(P )} = 0;
(b) for even p,

EP{ξp(P )} =
∑

π∈Π[1,p]

∏
∆∈π

(ξ(Pmin ∆), ξ(Pmax ∆))L2 ;

(c) for even p,

EP{ξp(P )} =
∑

π∈Π[1,p]

∏
∆∈π

`1{P (∆)} ∈ R0+, P (∆) := Pmin ∆ ∩ Pmax ∆;

cf. (1.12);
(d) for even p and A ∈ D, EP{ξp(AP )} = αp/2`p/2(Ap/2); cf. [W, eqn (74)].

The RHS of the equalities l.19(b), (c) involve the p edges P 1, . . . , P p of P . It is not
clear what the RHS can possibly mean when P is not an interval, but some other
body in Rp, such as an ellipsoid. We shall show that there is a suitable re-rendering
of the product on the RHS of 1.19(b), however, whereby it will continue to make
sense for any D ∈ Dp. This requires the intersection of D with the first ‘diagonal
skeleton’:

Ip1 :=
p⋃
i=1

p⋃
j=i+1

Ii,j , Ii,j := {x : x ∈ Rp & xi = xj},(1.20)

with which the space Rp is naturally endowed. Wiener’s equality (75) survives re-
markably well.

This quite essential intrusion of the first and also higher order diagonal skeletons,
cf. (4.5), brings into focus novel aspects of the anatomy of the spaces Rp not revealed
by the study of their coordinate hyperplanes of dimensions p − 1, p − 2, . . . , 2, 1. It
interjects into the theory a large amount of complicated combinatorics, which de-
mands the introduction of several combinatory concepts. Thankfully, the extremely
technical combinatory analysis usually ensues in some aesthetically satisfactory re-
sult.

(f ) New results
In §3 we first show that for p > 2, the measure ξp deviates from ξ1, in not being

absolutely continuous with respect to `p (cf. 3.8). We then answer the basic question
1.15 for intervals P , Q in 3.13. In §4 we bring in the diagonal skeleton Ipi and
give a reinterpretation in terms of it for the RHS of the cross-covariance formula in
3.13, whereby it continues to make sense for any D ∈ Dp and any E ∈ Dq. This
is done by defining for each D ∈ Dp and each k ∈ [1, [p/2]] and each h ∈ Rp−2k,
canonical coefficients γpk(D,h), cf. definition 4.13, and showing that the RHS of the
cross-covariance formulae in (3.13) with q 6 p is a sum of integrals of the type,∫

Rq−2k
γp1

2 (p−q)+k(D,h)γqk(E, hφ)`q−2k (dh),

hφ being a permutation of the components of h.
In §5 we show that the reframed cross-covariance equality holds for D ∈ Rp and

Q ∈ Rq. Immediate corollaries are the countable additivity and strong additivity
of ξp on Rp and its (countably additive) extendibility to Dp. A little extra effort
shows the validity of the covariance formula itself for D ∈ Dp and E ∈ Dq. This
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accomplishes the first major objective of the paper. The equality ξp × ξq = ξp+q on
Dp ×Dq follows.

Our next major objective, quite difficult, is to show that the (closed) subspaces
Sξp of L2 spanned by the values of the measures ξp on Dp for p > 0, satisfy the strict
inclusions,{

Sξ0 ⊂ Sξ2 ⊂ · · · ⊂ Sξ2p ⊂ · · · ; Sξ1 ⊂ Sξ3 ⊂ · · · ⊂ Sξ2p+1 ⊂ · · · ;
Sξ2p⊥Sξ2q+1 , p, q ∈ N0+.

(1.21)

Here ξ0 is the measure on {∅, {0}}, where 0 ∈ R, such that ξ0(∅) = 0 and ξ0{(0)} is
the function constantly 1 on Ω (§§ 7, 8). With this new information, we show that the
orthogonal projections ηp, ζp of the measures ξp on S⊥ξp−2

and Sξp−2 , respectively, are
precisely the absolutely continuous and singular parts of the measure ξp with respect
to the Lebesgue measure `p. These projections thus yield the Lebesgue decomposition
of ξp with respect to `p.

The covariance structure of the measure ηp, the absolutely continuous part of ξp,
is considerably simpler than that of ξp; we have

Sηp⊥Sηq , p 6= q; & ∀D,E ∈ Dp, (ηp(D), ηp(E))L2 =
∑
φ

`p(D ∩ Eφ),

where the summation is over the class of all permutations φ of {1, 2, . . . , p} and Eφ

is the φ-permutation of the set E. Letting Dsym
p be as in (1.9), it follows at once that

∀D,E ∈ Dsym
p , (ηp(D), ηp(E))L2 = p!`p(D ∩ E),

i.e. ηp, like ξ1, cf. (1.12), is orthogonally scattered on Dsym
p . Connecting ξp and ηp, we

have the orthogonal decomposition,

Sξp = Sηp + Sηp−2 + · · ·+ Sηp−2[p/2] , Sηj⊥Sηk , j 6= k,

the final term being Sη1 or Sη0 according as p is odd or even (§9).
Turning to the Lebesgue–Pettis integrability and integration, we first deal with

the class P1,ηp of all real-valued Lebesgue–Pettis integrable functions with respect
to the simpler measure ηp, and the Lebesgue–Pettis integral operator Eηp (§10). We
prove that

P1,ηp = L2(Rp).
In this the inclusion P1,ηp ⊆ L2(Rp) is far from obvious. We then show that

1√
p!
Eηp = a partial isometry on L2(Rp) onto Sηp ⊆ L2,

the null space of which is the class of all functions in L2(Rp) with vanishing sym-
metrization, and that therefore the restriction of (1/

√
p!)Eηp to the class Lsym

2 (Rp)
of symmetric functions in L2(Rp) is an isometry on Lsym

2 (Rp) onto Sηp ⊆ L2. Letting

Lξ2 := cls
∞⋃
k=0

Sηk ,

we obtain the following explicit orthogonal expansion:

∀x ∈ L2, proj(x|Lξ2) =
∞∑
p=0

1
p!
Eηp(fpx),(1.22)
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where fpx := dνpx/d`p stands for the Radon–Nikodym derivative, and νpx(∆) :=
(x, ηp(∆)), ∆ ∈ Dp (§11).

Integration with respect to the vector measure ηp yields a full-fledged theory of
projections of ξp(D) onto Sξq : we show that for p, q ∈ N+, such that q 6 p and p− q
is even,

Proj(ξp(D)|Sξq) =
[q/2]∑
k=0

∫
Rq−2k

γp1
2 (p−q)+k(D,h)ηq−2k (dh), D ∈ Dp.

In particular, we have for q = p,

ξp(D) =
[p/2]∑
k=0

∫
Rp−2k

γpk(D,h)ηp−2k (dh).(1.23)

Turning to the more involved integrability class P1,ξp and the more involved inte-
gration Eξp , we first so define the p, k marginalization fpk of f that

fpk (·) :=
∫
Rp
f(t)γpk(dt, ·), a.e. `p−2k on Rp−2k (§12)(1.24)

and show that f ∈ P1,ξp iff for each k, f ∈ L1,γp
k

(·,h) and fpk (·) ∈ P1,ηp−2k , and that
for f ∈ P1,ξp ,

Eξp(f) =
[p/2]∑
k=0

Eηp−2k(fpk ) (§13).(1.25)

From the formula (1.25) the cross-covariance (Eξp(f),Eξq(g)), for f ∈ P1,ξp , g ∈ P1,ξq ,
is easily obtained as is also the formula for the expectation EP{Eξp(f)}.

The next major objective, the Fubini theorem for the tensor product, hinges on
the implication

f ∈ P1,ξp & g ∈ P1,ξq =⇒ f × g ∈ P1,ξp+q , p, q ∈ N+.(1.26)

But this is extremely hard to show, since nothing is known about the action of a linear
functional on a product of vectors (see 14.10 and infra). Once (1.26) is established,
it follows easily that Eξp+q(f × g) = Eξp(f) · Eξq(g).

The inversion of the relations (1.23) and (1.25) turn out to be, respectively

ηp(D) =
[p/2]∑
k=0

(−1)k
∫
Rp−2k

γpk(D,h)ξp−2k (dh)(1.27)

and

Eηp(f) =
[p/2]∑
k=0

(−1)k
∫
Rp−2k

fpk (h)ξp−2k (dh).(1.28)

These Möbius inversions are very difficult to prove (§15), and require a new ‘division’
operation A|B for finite sets such that A ⊆ B, discussed in Appendix C. These
inversions establish a nexus between the ηp and Eηp and the Hermite polynomials in
the Kakutani format (16.2), namely,

∀A ∈ D1, ηp(Ap) = Hp{ξ1(A), `1(A)}
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and

∀f ∈ L2(R) & f×p = f×f×· · ·×f (p times), Eηp(f×p) = Hp{Eξ1(f), |f |22,`1},
where the exponent ×pi indicates tensor power (§16). Combining this with the Fubini
equality, we have for mutually orthogonal f1, . . . , fn ∈ L2(R),

Eηp1+···+pn

( n×
i=1

f×pii

)
=

n∏
i=1

Hpi{Eξ1(fi), |fi|22,`1},(1.29)

The last equality allows us to deduce the results of Ito, Kakutani, and Cameron &
Martin (§16).

(g ) Limitations of the theory and further work
The theory given in this paper fails in regard to the general Fubini theorem. Even

in the simplest case, p = q = 1, this theorem, to wit, ∀F ∈ P1,ξ2 ,

Eξ2(F ) =
∫
R

{∫
R
F (s, t)ξ1 (ds)

}
ξ1(dt)(5)

cannot be articulated, since the integrand in (5), namely, the partial integral G(·)
defined on R by

∀t ∈ R, G(t) =
∫
R
F (s, t)ξ1 (ds) ∈ L2

is not scalar-valued but random-variable-valued, and its integration falls outside the
ambit of Appendix A. The same difficulty afflicts the general slicing equality

ξp+q(D) =
∫
Rq
ξp(Dt)ξq(dt).

To overcome this limitation the integration pattern outlined in Appendix A will
have to be developed for the case in which both measure and integrand are random
variables possessing finite moments of all orders. It would be interesting to know how
the ‘stochastic integration’, so resulting, will connect with the important and widely
used stochastic integration initiated by Ito (1944).

Also opened up for future investigation are the (univariate) distribution functions
Fp,D(·) on R of the R-valued random variable ξp(D), for p ∈ N+ and D ∈ Dp. What is
Fp,D(·), for instance, when p = 3 andD is the ellipsoid x2/a2+y2/b2+z2/c2 = 1? Does
F3,D have a density? Is it determined by its moments? Is it infinitely decomposable?

An extension in a different direction would be to work out the theory starting with
complex-valued ρ(D) in definition 1.4(a). It might shed new light on the quantum
mechanical bearing of the Brownian motion (cf. Wiener 1985, lec. 9; Segal 1956).

(h ) Bearing on the Feynman integral
The equalities (1.24), (1.25), which depart from the existing vector measure theory,

bear significantly on the recent efforts of Hu & Meyer (1980) to explicate mathemat-
ically the Feynman integral. In their paper (1980, eqn (5)), and in the later paper
on this subject by Johnson & Kallianpur (1993) appears the so-called kth trace of a
function f on Rp, which is defined on Rp−2k by

(Trk f)(s2k+1, . . . , sp) =
∫
Rp
f(s1, s1, . . . , sk, sk; s2k+1, . . . , sp) ds1 · · ·dsk.(6)
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The p, k marginalization fpk , given in (1.24), which appears quite naturally in the
theory of Eξp , is exactly

(
p
2k

)
α2k times this k-trace, in the special case in which f is

symmetric, cf. 12.18b, e below. Its existence is ensured by the condition f ∈ P1,ξp ,
i.e. by the requirement that f be Lebesgue–Pettis integrable with respect to the (full
fledged) chaotic measure ξp. The imposition of this condition automatically provides
explicit liftings, cf. 13.18 and 13.19, and obviates the need for ad hoc searches of the
kind undertaken in recent papers on the Feynman integral.

(i ) Historical remarks
While Wiener [W] did not prove the countable additivity of ξp, he left enough of

a clue in the formula (75) whereby a modern researcher could get to it by first ad-
dressing the covariance question 1.15. As for the so-called ‘multiple Wiener integral’,
Wiener’s attempt to introduce it ([W], eqs (76)–(87)) is flawed.6 His treatment in
both [W] and his book (1958) is incomplete by virtue of his silence on the integrability
classes P1,ξp , and his unawareness that the implication (1.26) needed demonstration.
But after these lacunae are filled in, his conclusions (including the one derived from
the flawed equations in [W]) are seen to be completely correct. See corollary 14.12
below.

Integrals, in which pairs of variables in the integrand are identical, needed for the
Feynman work, play an intrinsic role in Wiener’s 1938 paper [W] and more so in his
1958 book. Thus equation (77) in [W], where n is even and n = 2m, reads (after a
typographical correction),

EP
{∫

Rn
f(t1, . . . , tn)ξ(dt1) · · · ξ(dtn)

}
=
∑∫

Rm
f(t1, t1, . . . , tm, tm) dt1 · · ·dtn,

‘where the summation is carried out for all possible division of the 2m ts into pairs’,
and where it should be added the integrand exhibited on the RHS corresponds to
the simplest of all such pairings. Such summations also appear in Wiener’s book
Cybernetics (1961, eqns (3.22), (3.23)). Situations such as those in the trace formula
(6), p. 1111, where the pairing is only of 2k out of n variables, are implicit in [W]
and appear explicitly in the 1958 book, cf., for example, equations (3.20), (3.31) for
the case n = 2, 3 and the remarks for larger n on page 35 (bottom).

Furthermore, Wiener derives the integrations Eη2 , Eη3 (his G1, G2) from Eξ2 ,
Eξ3 by a Gram-Schmidt procedure in Wiener (1958, pp. 28–36), getting in effect the
Möbius inversions (1.28). But Wiener worked only with the very easy cases p = 2 and
p = 3, and rather cavalierly dispensed with the troubles latent in handling arbitrary
p by a remark or two (cf., for example, Wiener 1958, p. 36, last para).

To turn next to the work of Cameron & Martin (1947), their theorem 1 emerges
readily from the current paper via the implication:

ηp-orthogonal expansion (1.22) & ηp-Hermite connection (1.29)

=⇒ Fourier Hermite Series Theorem,

cf. 16.17, 16.18. Our paper sheds no light, however, on their earlier work on the eval-
uation of scalar-valued Wiener integrals

∫
C(R) F (x)w (dx), for interesting functionals

F , where w(·) is Wiener’s probability measure over C(R).

6 His functions f(ν, ·) introduced in (82) are not simple (but σ-simple) and cannot be plugged into
(76). Furthermore, the inequality in (83) is quite wrong.
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Next came Kakutani’s paper (1950). His theorem too is seen to emerge from the
previous implication:

ηp-orthogonal expansion (1.22) & ηp-Hermite connection (1.29)

=⇒ Kakutani’s Isomorphism Theorem,

once it is noted Kakutani’s isometry Wp (defined in Kakutani (1950, p. 321)) is the
inverse of ours, more precisely (p!)−1/2Eηp = W−1

p , cf. 16.7.
We now come to Ito’s important paper (1951). Ingeniously, Ito defines a (mea-

sureless) Daniel integral Ip(·) on L2(Rp) with values in a Gaussian–Hilbert space.
By an outstanding tour de force he shows that Ip1+···+pn(×p

i=1 f
xpi
i ) is equal to the

Hermite polynomial product on the RHS of our (1.29) when f1, . . . , fn in L2(R) are
orthogonal. Then invoking the Cameron–Martin Theorem, he obtains the orthogonal
expansion for x in the form

∑∞
p=0 Ip(fp). The implication involved in his proof thus

runs:

Ip-Hermite connection & Cameron–Martin Theorem

=⇒ Ip-orthogonal expansion.

This appeal to the Cameron–Martin theorem is dispensable, however, for it turns
out that in fact Ip = Eηp . The demonstration is straightforward, though not trivial,
cf. 13.21. Thus Ito’s theorem is equivalent to (1.22).

Ito’s designation of his Ip as a ‘multiple Wiener integral’ is a misnomer, since
nothing akin to ηp or Ip appears in Wiener’s 1938 paper. The fact that Wiener’s
objective in [W, §12] was limited to the task of approximating a p-chaos by a p-
polynomial chaos, together with the fact that the Cameron–Martin theorem is a
crucial ingredient in Ito’s proof, shows that the current designation ‘The Wiener–Ito
expansion’ for the Ip-orthogonal expansion should give way to the more accurate
‘the Ito–Cameron–Martin expansion’. It must be recalled, however, that in a report
(1942) entitled ‘Response of a non-linear device to noise’, Wiener initiated the use of
multiple integrals of the Brownian motion to analyse nonlinear transducers, and this
eventually did lead him to the ‘Wiener–Ito’ expansion, which he presented in his 1958
book, without use of the Cameron–Martin theorem. The Kakutani–Ito approach was
further developed by Neveu (1968) and others (cf. Gross 1976).

While the results of Cameron–Martin, Kakutani and Ito mentioned above are
deducible from ours, the converse is not true. Their theories cover at best only the
easy ηp measure and its integration; the measure ξp, the inclusions between the spaces
Sξp , as in (1.21), the projection results and the ξp, ηp relationships (1.23), (1.27) are
lost.

Different in this regard is the Memoir of Engel (1982): our important theorem that
ξp is CA on Dp (§5) is a special case of his theorem 4.5 on the countable additivity
of the product σp of random measures τ1, . . . , τp. Engel’s τi over R are akin to our
ξ of (1.12), except that the τi are not assumed to be Gaussian. Engel’s proof of his
theorem 4.5 is strange, and he does not address the question as to what the covariance
(σp(D), σq(E)) might be. It is not clear that this question can be answered, for the
restraints that Engel imposes on the τi, to compensate for their non-Gaussianness,
might not be strong enough to provide an equality akin to Wiener’s (75).

In view of this limitation of Engel’s Memoir, it is of no help to us. To get our
covariance equality, we would have to revert to Wiener’s (75), and this would mean
retracing the steps in §§ 3, 4.
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As should be evident from the discussion above, some discipline with regard to
combinatorial issues is essential to pursue our goals. In the rest of this section, we
explain our special notation and conventions governing such matters. More specific
ancillary material is covered in the Appendices A, B, C.

(j ) Cartesian products
Let `,m, n ∈ N+ and let A ⊆ R`, B ⊆ Rm, C ⊆ Rn and r := `+m+ n. Then, cf.

1.1(d),

A×B × C := {f : f ∈ R[1,r] = Rr, (f(1), . . . , f(`)) ∈ A,
(f(`+ 1), . . . , f(`+m)) ∈ B & (f(`+m+ 1), . . . , f(`+m+ n)) ∈ C}.

For instance, if A is a rectangle in R2 and B is an ellipsoid in R3, then

A×B = {f : f ∈ R[1,5] & (f(1), f(2)) ∈ A & (f(3), f(4), f(5)) ∈ B}
= {t : t ∈ R5 & (t1, t2) ∈ A & (t3, t4, t5) ∈ B}.

More formally:

1.30. Definition. (Cartesian product) Let n ∈ N+ & ∀i ∈ [1, n], pi ∈ N+ & Ai ⊆ Rpi ,
and write p0 = 0. Then

n×
i=1

Ai := A1 × · · · ×An
= {f : f ∈ R[1,p1+···+pn] & ∀i ∈ [1, n],

(f(p0 + · · ·+ pi−1 + 1), . . . , f(p0 + · · ·+ pi−1 + pi)) ∈ Ai}.
Thus with every such Cartesian product P is associated with an r ∈ N+ such that
P ⊆ Rr, namely, r = p1 + p2 + · · ·+ pn.

(k ) The restriction operator on Rp

1.31. Definition. Let p ∈ N+ & ∅ 6= M = {i1, . . . , im} ⊆ [1, p] & 1 6 i1, . . . , im 6 p.
Then ℘M is the operator on Rp into Rm, such that

∀t ∈ Rp & ∀α ∈ [1,m], [℘M (t)](α) = t(iα).

Briefly, ℘M (t) = (t(i1), t(i2), . . . , t(im)) ∈ Rm. For ∅ = M ⊆ [1, p], we define ℘M (t) =
0 ∈ R0.

Note. Notice that ∀t ∈ Rp, the domain of the function ℘M (t) is not M but
[1,m] = [1,#M ]. Thus ℘M 6= Rstr.M and Range℘M 6⊆ RM , but ℘M = Rstr.[1,m]
and Range℘M ⊆ Rm. Indeed

℘M ∈ L(Rp,Rm).

Only the number m := #(M) is involved on the RHS. The set M contributes only
to the values of the function ℘M (t).

1.32. Definition. (Induced restriction) (a) Let ∅ 6= M ⊆ [1, p]. Then

∀A ⊆ Rp, ℘M (A) = {℘M (f) : f ∈ A}.
(b) Let m ∈ [1, p], M = {i1, i2, . . . , im} ⊆ [1, p] & 1 6 i1 < i2 < . . . < im 6 p.

Then
∀A ⊆ Rm, ℘−1

M (A) := {t : t ∈ Rp & ℘M (t) ∈ A},
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i.e. ℘−1
M (A) is the M -cylinder in Rp with cross section A ⊆ Rm.

The borderline case M = ∅ recurs in the paper. For the restriction ℘∅ it induces,
one can easily check that

∀p ∈ N+ & ∀A ⊆ Rp, ℘∅(A) =

{
{0}, if A 6= ∅,
∅, if A = ∅.(1.33)

(l ) Intervals and their faces
Let p ∈ N+ and P 1, . . . , P p ⊆ R. Then we call P := P 1 × · · · × P p an interval in

Rp. The following notation is very useful.{
∀ intervals P of Rp & ∀M ⊆ [1, p], we write PM := ℘M (P ),
and call PM the M -hyperface (briefly, M -face) of P .

(1.34)

We leave it to the reader to verify the following triviality:

1.35. Triviality. (On PM ) Let p ∈ N+, P := P 1×· · ·×P p, where P 1, . . . , P p ⊆ R,
and let M ⊆ [1, p]. Then

(a) for M = ∅, PM = P∅ = {0} = R0;
(b) for M 6= ∅, say M = {i1, . . . , im}, 1 6 i1 < . . . < im 6 p, we have

PM = P i1 × · · · × P im ⊆ Rm.

From this result we see that PM is anm-dimensional hyperface of the p-dimensional
interval P .

(m ) Permutations, symmetry and symmetrization

∀p ∈ N+, Perm(p) := {φ : φ is a permutation on [1, p] onto [1, p]}.(1.36)

1.37. Definition. Let φ ∈ Perm(p). Then

∀t ∈ Rp, tφ := t ◦ φ = (tφ(1), tφ(2), . . . , tφ(q)),

∀A ⊆ Rp, Aφ
−1

:= φ−1(A) = {t : t ∈ Rp & tφ ∈ A},
∀A ⊆ Rp, A is symmetric iff ∀φ ∈ Perm(p), Aφ = A.

1.38. Triviality. Let φ ∈ Perm(p) & A ⊆ Rp. Then

t ∈ Aφ−1 ⇔ tφ ∈ A; t ∈ A⇔ tφ ∈ Aφ; tφ
−1 ∈ A⇔ t ∈ Aφ.

1.39. Definition. Let f be a function on Rp to R. Then
(a) ∀φ ∈ Perm(p) & ∀t ∈ Rp, fφ(t) := f(tφ) = f(tφ(1), . . . , tφ(p));
(b) the symmetrization f̃ of f is defined by

f̃ :=
1
p!

∑
φ∈Perm(p)

fφ on Rp;

(c) f is called symmetric iff ∀φ ∈ Perm(p), fφ = f ;
f is called antisymmetric iff ∀φ ∈ Perm(p), fφ = (sgnφ)f .
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The following propositions are obvious.

1.40. Proposition. Let p ∈ N+. Then
(a) ∀A1, . . . , Ap ⊆ R & ∀φ ∈ Perm(p),

(A1 × · · · ×Ap)φ−1
= Aφ(1) × · · · ×Aφ(p) &

p×
i=1

Ai is symmetric ⇔ A1 = · · · = Ap;

(b) Psym
p = {Ap : A ∈ D1}, cf. 1.9;

(c) the symmetric subsets of Rp form a σ-algebra over Rp;
(d) Rsym

p , Dsym
p , Bsym

p are respectively a ring, a δ-ring, and a σ-algebra over Rp, cf.
1.9, (1.10).

1.41. Proposition. Let p ∈ N+. Then
(a) ∀f1, . . . , fp on R & ∀φ ∈ Perm(p),

(f1×· · ·×fp)φ−1
= fφ(1)×· · ·×fφ(p) & f1×· · ·×fp is symmetric ⇔ f1 = · · · = fp;

(b) the symmetric functions on Rp to R form a linear algebra with unit 1 that is
closed in the pointwise convergence topology.

Also obvious is the following:{
∀A ∈ Rp & ∀φ ∈ Perm(p), (χA)φ = χφ−1(A),

A is symmetric iff χA is symmetric.
(1.42)

Slightly less obvious are the following results:{
If B ∈ Bsym

p , then ∃ a sequence (Dn)∞n=1 in Dsym
p

such that Dn ↑ Bn as n→∞.
(1.43)

{
If f ∈M(Bp,B1) is symmetric, then ∃ a sequence (sn)∞n=1 such
that sn ∈ S(Bsym

p ,R) 3 sn(·)→ f(·) & |sn(·)| 6 |f(·)| on Rp.
(1.44)

{
Every symmetric s in S(Bp,R) has a representation∑r

k=1 bkχBk , where Bk ∈ Bsym
p .

(1.45)

As for the symmetrization, we have

∀f on Rp to R & ∀t ∈ Rp, |f̃(t)| 6 |f |˜(t).(1.46)

Part I. Chaotic measure theory

2. The Venn expansion and proof of Wiener’s equality (75)

Since Wiener’s equality (75) in the format 1.18 is central to the entire paper, we
shall indicate its proof. This depends on two lemmas. The first of these lemmas,
which we shall take for granted, concerns products of random variables obtained
from independent normally distributed random variables:

2.1. Lemma. Let (i) x1, . . . , xr be r independent normally distributed random
variables over (Ω,A,P) such that

EP(xi) = 0 & EP(x2
i ) = δ2

i > 0.
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(ii) (yk)nk=1 be a sequence with range ⊆ {x1, . . . , xr} and ni be the frequency of xi
in (yk)nk=1 (thus 0 6 ni &

∑r
i=1 ni = n). Then

(a) ∀ odd n,

EP
( n∏
k=1

yk

)
= 0;

(b) ∀ even n = 2m, cf. 1.1(i) and 1.16(a), (b),

EP
( n∏
k=1

yk

)
=

r∏
i=1

αniδ
ni
i =

∑
π∈Π[1,n]

∏
∆∈π

(ymin ∆, ymax ∆)L2 .

In (b) the second equality rests on the fact that the product on the RHS is non-zero
only for those π ∈ Π[1,n] for which for each cell ∆ ∈ π, we have ymin ∆ = ymax ∆ =
same xi, and therefore (ymin ∆, ymax ∆)L2 = δ2

i .
The second lemma specifies the expansion implicit in the Venn diagram of the n

edges of an interval in Rn:

2.2. Lemma. (Venn expansion) Let
(i) n ∈ N+, A1, . . . , An ⊆ R & A =×n

i=1Ai,
(ii) (B1, . . . , B2n−1) be the sequence of cells in the Venn diagram of the family

{A1, . . . , An} (in any order) that are inside
⋃n
i=1Ai; thus

∅ ⊆ Bj ⊆ R &
2n−1⋃
j=1

Bj =
n⋃
i=1

Ai,

(iii) ∀i ∈ [1, n], Ni := {j : j ∈ [1, 2n−1] & Bj ⊆ Ai} (so that each Ai =
⋃
j∈Ni Bj).

Then ∀i, j, k, . . . ∈ [1, n], i, j, k, . . . distinct, we have
(a) #Ni = 2n−1, #(Ni ∩Nj) = 2n−2, . . . ,#(∩pi=1Ni) = 1;
(b) Ai =

⋃
j∈Ni Bj & Bj‖Bj′ for j 6= j′;

(c) A =
⋃
j1∈N1

· · ·⋃jn∈Nn(Bj1 × · · · × Bjn), and the (2n−1)n = 2n(n−1) intervals
on the RHS are ‖.

Proof. (Gist) (a) is obvious. As for (b), Ni is the set of subscripts j for which Bj
is the jth Venn cell included in Ai, and so Ai =

⋃
j∈Ni Bj . The Bj , being Venn cells

are of course ‖. (c) follows on substituting from the last equality in A = ×n
i=1Ai,

and simplifying.

Gist of proof of theorem 1.18. Let the notation be as in 2.2. We need prove part
(b) only for n even. Then ∀i ∈ [1, n], by 2.2(b),

ξ(Ai) =
∑
j∈Ni

ξ(Bj) =
2n∑
j=1

χNi(j)ξ(Bj).(1)

Hence by the generalized distribution law,
n∏
i=1

ξ(Ai) =
2n∑
j1=1

· · ·
2n∑
jn=1

χN1(j1)ξ(Bj1) · · ·χNn(jn)ξ(Bjn)

=
2n∑
j1=1

· · ·
2n∑
jn=1

bj1...jnξ(Bj1) · · · ξ(Bjn),
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where bj1...jn := χN1(j1) · · ·χNn(jn). Thus

EP
{ n∏
i=1

ξ(Ai)
}

=
2n∑
j1=1

· · ·
2n∑
jn=1

bj1...jnEP{ξ(Bj1) · · · ξ(Bjn)}.(2)

Now any two of the Bj1 · · ·Bjn are either identical or ‖. Hence letting yk := ξ(Bjk),
the sequence (yk)nk=1 satisfies the premises of 2.1. Hence by 2.1(b),

EP{ξ(Bj1) · · · ξ(Bjn)} =
∑

π∈Π[1,n]

∏
∆∈π

(ξ(Bjmin ∆), ξ(Bjmax ∆))L2 .(3)

It follows from (3) that

RHS(2) =
2n∑
j1=1

· · ·
2n∑
jn=1

bj1...jn
∑

π∈Π[1,n]

∏
∆∈π

(ξ(Bjmin ∆), ξ(Bjmax ∆))L2 .

The
∑

π∈Π can be brought out. Hence to get 1.18(b) we need only show that

∀π ∈ Π[1,n],
2n∑
j1=1

· · ·
2n∑
jn=1

bj1...jn
∏
∆∈π

(ξ(Bjmin ∆), ξ(Bjmax ∆))L2

=
∏
∆∈π

(ξ(Ajmin ∆), ξ(Ajmax ∆))L2 .(I)

We leave to the reader the cumbersome but routine proof of (I), based on expanding
the inner products on the RHS of (I) by means of (1), and simplifying. �

Recall, cf. proposition 1.40(b), that

∀n ∈ N+, P ∈ Psym
n ⇐⇒ ∃A ∈ D1 3 P = An,

i.e. an interval in Pn is symmetric iff it is a hypercube An, A ∈ D1. This justifies the
following terminology:

2.3. Definition. Let n ∈ N+ and P ∈ Pn. We say that
(a) P is hyposymmetric iff P is a Cartesian product of ‖ symmetric intervals, i.e.

iff ∃r ∈ N+, ∃‖A1, . . . , Ar ∈ D1 & ∃n1, . . . , nr ∈ N+ with n1 + · · ·+nr = n such that
P =×r

i=1A
ni
i .

(b) P is permutation hyposymmetric iff ∃φ ∈ Perm(p) 3 P φ is hyposymmetric.

Example. Let A1, A2, A3 ∈ D1 be ‖. Then

P := A1 ×A3 ×A1 ×A2 ×A2 ×A1 ×A3 ×A3 ∈ P8

is permutation hyposymmetric, since there exists a φ ∈ Perm(8) such that P φ =
A3

1 ×A2
2 ×A3

3, is hyposymmetric.
In this terminology the Venn expansion in lemma 2.2(c) can be recapitulated as

follows:

2.4. Theorem. Let n ∈ N+, A1, . . . , An ⊆ R & A :=×n
i=1Ai. Then ∃m = 2n(n−1)‖

permutation hyposymmetric intervals B̄1 · · · B̄m ⊆ Rn such that A =
⋃m
k=1 B̄k.

Proof. With the notation used in 2.2, we see that the j1, j2, . . . , jn, which index
an interval B̄j1...jn := Bj1 × Bj2 × · · · × Bjn ∈ Pn on the RHS of 2.2(c), need not
be distinct. In other words, two or more sides of B̄j1...jn can be the same. By a
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suitable permutation φ in Perm(n), we can bring the repeated subscripts together,
thereby obtaining an interval (B̄j1...jn)φ = Cν1

1 × Cν2
2 × · · · × Cνrr , where r ∈ [1, n]

and ν1, . . . , νr ∈ N+ & ν1 + · · · + νr = n. In this C1, C2, . . . , Cr ⊆ D1 are ‖, since
B1 · · ·B2r−1 are ‖. Thus (B̄j1...jn)φ is hyposymmetric and B̄j1...jn is permutation
hyposymmetric, by 2.3(b).

Thus 2.2(c) reduces to

A =
⋃

j1∈N1

· · ·
⋃

jn∈Nn
B̄j1...jn ,

i.e. A is a union of m = 2n(n−1)‖ permutation hyposymmetric intervals.

Theorem 2.4 has an important bearing on the structure of the measures ξp on Pp.
We first note that from proposition 1.40(a) and the definition (1.13) of ξp, it follows
readily that

∀P ∈ Pp & ∀φ ∈ Perm(p), ξp(P φ) = ξp(P ).(2.5)

We now assert the following result on the structure of ξp(P ).

2.6. Corollary. Let p ∈ N+ and P ∈ Pp. Then ∃r = 2p(p−1)‖ hyposymmetric
intervals Q1, . . . , Qr ∈ Pp such that

ξp(P ) =
r∑

k=1

ξp(Qk).

Proof. By 2.4, ∃r = 2p(p−1)‖ permutation hyposymmetric intervals Q̄1, . . . , Q̄r in
Pp such that P =

⋃r
k=1 Q̄k. Since, cf. (1.14), ξp is FA on Pp, it follows that

ξp(P ) =
r∑

k=1

ξp(Q̄k).(1)

But since Q̄k is permutation hyposymmetric, therefore ∃ a hyposymmetric interval
Qk ∈ Pp and ∃ a permutation φk ∈ Perm(p) such that Q̄k = Qφkk , whence by (2.5),
ξp(Q̄k) = ξp(Q

φk
k ) = ξp(Qk). Hence (1) reduces to the desired equality.

3. Wiener’s p-homogeneous chaotic measure on the pre-ring Pp of
intervals

In (1.13) we defined for any p ∈ N+, the p-homogeneous chaotic measure ξp on the
pre-ring Pp of intervals of Rp with edges in D1 and noted that ξp ∈ FA(Pp,L2). For
completeness we have to include the trivial case p = 0, and to this we first attend:

3.1. Extension to the case p = 0. Since, cf. 1.1(d), R0 = {0}, we define ξ0 on the
trivial algebra A0 := {∅,R0} over R0 by

ξ0(∅) := 0 ∈ L2 & ξ0(R0) = ξ0({0}) := 1(·) ∈ L2,

where 1(·) is the constant-valued function with value 1. Likewise, we define `0(·) on
A0 by

`0(∅) := 0 ∈ R & `0(R0) = `0({0}) := 1 ∈ R.
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Trivially, ξ0 ∈ CA(A0,L2), `0 ∈ CA(A0,R0+). Note that every real (or complex-)
valued f on R0 is A0-measurable, that∫

R0
f(t)`0(dt) = f(0),

and that {∫
R0
f(t)ξ0(dt)

}
(·) = f(0) on Ω.

It follows from 1.14 and 3.1 that

∀p ∈ N0+, ξp ∈ FA(Pp,L2).(3.2)

The following lemma on the raw moments of ξp(P ) is important:

3.3. Lemma. Let p ∈ N0+. Then ∀P ∈ Pp and ∀r ∈ N+, ξp(P ) ∈ Lr :=
Lr(Ω,A, P ;R) &

|ξp(P )|rLr := EP{|ξp(P )|r} 6 γrp · [`p(P )]r/2,

where

γn :=

{
αn, if n is even,
2[n/2][n/2]

√
(2/π), if n is odd.

Thus, ξp(P ) has finite (absolute raw) moments of all orders r ∈ N+. In particular

ξp(P ) ∈ L2 & |ξp(P )|2L2
6 α2p`p(P ).

Proof. Let P := P 1 × · · · × P p ∈ Pp and r ∈ N+. In the generalized Schwartz
inequality for non-negative random variables X1, . . . , Xp:

EP
( p∏
i=1

Xi

)
6
{ p∏
i=1

EP(Xp
i )
}1/p

,(1)

take Xi = |ξ1(P i)|r. Then, since ξ1(P i) is (0, `1(P 1)) normally distributed, we have
for its rpth absolute raw moment:

EP(Xp
i ) = EP{|ξ(P i)|rp} =

{
αrp`1(P i)rp/2, if rp is even,
2[rp/2][rp/2]!

√
(2/π) · `1(P i)rp/2, if rp is odd,

=: γrp`1(P i)rp/2.

It easily follows that RHS(1) = γrp · `p(P )r/2. Next,
p∏
i=1

Xi =
p∏
i=1

|ξ1(P i)|r = |ξ1(P 1) · · · ξ1(P p)|r = |ξp(P )|r.

Thus (1) reduces to

EP{|ξp(P )|r} 6 γrp`p(P )r/2.

From (3.2) and vector-measure theory we know that ξp has an FA extension to
Rp. Denoting this extension by the same symbol ξp, we have

∀p ∈ N0+, ξp ∈ FA(Rp,L2).(3.4)
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The inequality in 3.3 notwithstanding, ξp is not absolutely continuous with respect
to `p (in symbols, ξp ≺≺/ `p). This is best shown by first showing that ξ2 ≺≺/ `2, and
then adapting this result for p > 3. For p = 2, we apply Wiener’s equality 1.18(b)
taking p = 4 and P 1 = P 2 = A ∈ D1 and P 3 = P 4 = B ∈ D1; thus

(ξ2(A2), ξ2(B2)) = EP
{ p∏
i−1

ξ1(P i)
}

= `1(A)`1(B) + 2{`1(A ∩B)}2.

From this we easily get the following estimate for the ξ2 measure of finite unions of
‖ squares:

A1, . . . , An ∈ D1 & A1, . . . , An are ‖
=⇒

∣∣∣∣ξ2

( n⋃
i=1

A2
i

)∣∣∣∣2 > [`1( n⋃
i=1

Ai

)]2

.
(3.5)

This in turn suggests the following example to refute the absolute continuity of ξ2
with respect to `2.

3.6. Example. (ξ2 ≺≺/ `2) We consider the binary subintervals of (0, 1]:

(0, 1
2) [ 1

2 , 1]
(0, 1

4) (1
4 ,

1
2 ] ( 1

2 ,
3
4 ] ( 3

4 , 1]
...

(0, 1/2n] (1/2n, 2/2n] . . . ((2n − 1)/2n, 1]
...

Denoting those on the nth row by An,1, An,2, . . . , An,2n , we see that

∀n > 1, `1

( 2n⋃
k=1

An,k

)
= `1(0, 1] = 1.

Hence letting Rn :=
⋃2n

k=1(An,k)2, we see from (3.5) that

∀n ∈ N+, |ξ2(Rn)| > 1.(1)

But

∀n ∈ N+, `2(Rn) =
2n∑
k=1

`2(A2
n,k) =

2n∑
k=1

(1/2n)2 = 1/2n.

Hence `2(Rn)→ 0, as n→∞. Thus ξ2 ≺≺/ `2. �
The adaptation of this example to any p > 3, by the consideration of cylinders

based on the squares A2
n,k, hinges on the following lemma:

3.7. Lemma. Let A,B,C ∈ D1 and p > 3. Then

(ξp(A2 × Cp−2), ξp(B2 × Cp−2))L2 > α2p−4(ξ2(A2), ξ2(B2))L2 · `1(C)p−2.

Proof. Let a stand for the LHS. Then by (1.13),

a = EP{ξ1(A)2ξ1(C)p−2ξ1(B)2ξ1(C)p−2} = EP{ξ1(A)2ξ1(B)2ξ1(C)2p−4}
=

∑
π∈Π[1,2P ]

∏
∆∈π

`1{P (∆)} by 1.19(b),(1)
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where P := A×A×B ×B × C × · · · × C, with (2p− 4)C’s, and so P ∈ P2p.
Now given any π1 ∈ Π[1,4] and any π2 ∈ Π[5,2p], we have π := π1 ∪ π2 ∈ Π[1,2p]. For

this π, ∏
∆∈π

`1{P (∆)} =
∏

∆1∈π1

`1{Q(∆1)} ·
∏

∆2∈π2

`1{R(∆2)},(2)

where Q = A × A × B × B ∈ P4 & R = C2p−4 ∈ P2p−4. Denoting by Π 0
[1,2p] the

subclass of Π[1,2p] made of such decomposable π, we see from (2) that∑
π∈Π 0

[1,2p]

∏
∆∈π

`1{P (∆)} =
∑

π1∈Π[1,4]

∏
∆1∈π1

`1{Q(∆1)} ·
∑

π2∈Π 0
[5,2p]

∏
∆2∈π2

`1{R(∆2)}

= EP{ξ4(Q)} · EP{ξ2p−4(R)}.(3)

Since Π[1,2p] ⊃ Π 0
[1,2p], it follows from (1) and (3) that

a > EP{ξ4(Q)} · EP{ξ2p−4(R)}.(4)

But
EP{ξ4(Q)} = EP{ξ2(A2) · ξ2(B2)} = (ξ2(A2), ξ2(B2)),(5)

and by 1.19(d),

EP{ξ2p−4(R)} = EP{ξ1(C)2p−4} = α2p−4`1(C)p−2.(6)

Substituting from (5) and (6) in (4), we get the desired inequality.

3.8. Example. (ξp ≺≺/ `p for p > 2) Let p > 3 be fixed, and let

∀n ∈ N+, Rn =
2n⋃
k=1

(An,k × [0, 1]p−2),

where the An,k are as in 3.6. Since for k ∈ [1, 2n], the sets A2
n,k × [0, 1]p−2 are ‖, we

have, writing C = [0, 1],

ξp(Rn) =
2n∑
k=1

ξp(A2
n,k × Cp−2).

Hence by 3.7,

|ξp(Rn)|2L2
>

2n∑
i=1

2n∑
j=1

α2p−4(ξ2(A2
n,i), ξ2(A2

n,j))L2 · `1(C)p−2.(1)

But by the inequality 3.6(1),

RHS(1) = α2p−4

∣∣∣∣ξ2

( 2n⋃
i=1

A2
n,i

)∣∣∣∣2 > α2p−4.

Thus by (1), ∀n ∈ N+, |ξp(Rn)|2 > α2p−4. But again

`p(Rn) =
2n∑
k=1

`p(A2
n,k × Cp−2) =

2n∑
k=1

`1(An,k)2`p−2(Cp−2) = 1/2n.

Hence `p(Rn)→ 0, as n→∞. Thus ξp ≺≺/ `p. �
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Example 3.8 reveals the complexity of the measure ξp vis-à-vis the measure ξ1, of
which it is the product. The complexity of the ξp is more fully revealed by the cross
covariance formulae for (ξp(P ), ξq(Q)), for P ∈ Pp and Q ∈ Pq, to which we now
turn.

To obtain this cross-covariance we apply Wiener’s equality 1.18 to the sequence of
the edges of P,Q:

(P 1, P 2, . . . , P p, Q1, Q2, . . . , Qq).(1)
From 1.18(a), we see at once that

∀P ∈ Pp & ∀Q ∈ Pq, (ξp(P ), ξq(Q))L2 = 0, if p+ q is odd.(3.9)

To deal with the case of even p+ q = 2r, we note that since

(ξp(P ), ξq(Q))L2 = (ξq(Q), ξp(P ))L2 ,

we can assume, without loss of generality, that q 6 p. After applying 1.18(b) to the
sequence (Ak)2r

r=1 given by (1), we have to suitably partition the class Π[1,2r] into
subclasses of partitions in order to express the answer in terms of the intervals P , Q
and their hyperfaces.

Recall that for P =×n
i=1 P

i ⊆ Rn, the set M ⊆ [1, n] determines the hyperface of
P generated by the sides P i of P for which i ∈M . As we saw in 1.35, this hyperface
is

PM :=×
i∈M

P i ⊆ Rm, where m = #M & P∅ = {0} = R0.

Recall the notations used in 1.19(c). They are worth standardizing:

For P =

n×
i=1

P i ∈ Pn & ∆ = {i, j} & π ∈ ΠM ,

where M ⊆ [1, n] has even cardinality 2m,

P (∆) := P i ∩ P j & P (π) :=×
∆∈π

P (∆) ∈ Pm.

When m = 0, i.e. M = ∅, we define P (π) = P (∆) = {0}.

(3.10)

For the Lebesgue measure of P (π), we write, cf. 1.16(d):

∀n ∈ N+, ∀m ∈ [1, [n/2]] & ∀π ∈ Π n
m, anπ(P ) := `m{P (π)}.(3.11)

For m = 0, cf. 3.1, anπ(P ) = an∅ (P ) = 1. For m > 1, anπ(P ) =
∏

∆∈π `1{P (∆)}. Hence
by 1.19(b). 

∀ even n and r = n/2,∑
π∈Πn

n/2

anπ(P ) :=
∑

π∈Π[1,n]

∏
∆∈π

`1{P (∆)} = EP{ξn(P )}.(3.12)

With the notation (3.11), Wiener’s equality can be formulated in the following
way, which yields the desired covariances:

3.13. Theorem. (Wiener’s equality for the cross-covariance) Let
(i) p, q ∈ N+ be such that p+ q = 2r is even and q 6 p,
(ii) P ∈ Pp & Q ∈ Pq.
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Then, with the notation 1.16 and (3.11),

(a) when q < p, (ξp(P ), ξq(Q))L2 =
[q/2]∑
k=0

Γ pq
k (P,Q) ∈ R0+, where

Γ pq
0 (P,Q) :=

∑
φ∈Perm(q)

∑
π∈Πp

(p−q)/2

apπ(P )`q(PM ′π ∩Qφ),

& for k ∈ [1, [q/2]− 1],

Γ pq
k (P,Q) :=

∑
φ∈Perm(q−2k)

∑
π1∈Πp

1
2 (p−q)+k

∑
π2∈Π q

k

apπ1
(P )aqπ2

(Q)`q−2k{(PM ′π1
) ∩ (QM ′π2

)φ},

where M ′π1
:= [1, p]\Mπ1 , M ′π2

:= [1, q]\Mπ2 , and

Γ pq
[q/2](P,Q) :=



∑
π1∈Πp

[p/2]

apπ1
(P )

∑
π2∈Π q

[q/2]

aqπ2
(Q) = EP{ξp(P )} · EP{ξq(Q)}, q even,

∑
π1∈Πp

[p/2]

∑
π2∈Π q

[q/2]

apπ1
(P )aqπ2

(Q)`1(PM ′π1
∩QM ′π2

), q odd.

(b) when q = p, (ξq(P ), ξq(Q))L2 =
[q/2]∑
k=0

Γ qq
k (P,Q), where now

Γ qq
0 (P,Q) :=

∑
φ∈Perm(q)

`q(P ∩Qφ),

and ∀k ∈ [1, [q/2]], Γ pp
k (P,Q) is given by the formula in (a) with p replaced by q.

Proof. We apply 1.18(b) to the sets
A1, A2, . . . , Ap, Ap+1 · · ·Ap+q = A2r,

where
∀i ∈ [1, p], Ai = P i & ∀j ∈ [1, q], Ap+j = Qj .

(1)

Call a cell ∆ ∈ π ∈ Π p+q
r ‘good’ iff 1 6 min ∆ 6 p < max ∆ 6 2r. Let

Π p+q
r,ρ := {π : π ∈ Π p+q

r has ρ ‘good’ cells}.
We then have the ‖ decomposition

Π p+q
r =

[q/2]⋃
k=0

Π p+q
r,q−2k,

and the equality in 1.18(b) becomes

(ξp(P ), ξp(Q))L2 =
[q/2]∑
k=0

∑
π∈Πp+q

r,q−2k

∏
∆∈π

`1{A(∆)}.(2)

Now let 1 6 k < [q/2]. Then to each π ∈ Π p+q
r,q−2k corresponds first , sets M ⊆ [1, p],

L ⊆ [p+1, p+q] such that #M = (p−q)+2k, #L = 2k, and therefore #M ′ = #L′ =
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q − 2k, where M ′ := [1, p]\M , L′ := [p + 1, p + q)\L; second, a one–one function ψ
on M ′ onto L′; and third, partitions π1 ∈ ΠM , π3 ∈ ΠL, such that

π = π1 ∪ {{i, ψ(i)} : i ∈M ′} ∪ π3.

Whence∏
∆∈π

`1{A(∆)} =
∏

∆∈π1

`1{A(∆)} ·
∏
i∈M ′

`1{Ai ∩Aψ(i)} ·
∏

∆∈π3

`1{A(∆)}

=
∏

∆∈π1

`1{P (∆)} ·
∏
i∈M ′

`1{P i ∩Qψ(i)−p} ·
∏

∆∈π2

`1{Q(∆)},(3)

where π2 := {∆− {p} : ∆ ∈ π3} ∈ ΠN where N := L− {p} ⊆ [1, q], cf. (1). Clearly,
π1 ∈ Π p

1
2 (p−2)+k and π2 ∈ Π q

k . Also, φ(i) := ψ(i)−p, defines a permutation φ of [1, q].
When k = [q/2], M ′ is either void or has cardinality 1, depending on whether q is
even or odd; but the result (3) still holds, on condition that we replace the superscript
ψ(i) − p by i in the second factor in case q is odd, and remove this factor itself in
case q is even.

On substituting from (3) into (2) and simplifying, we get (a). The result (b) follows
as a special case.

3.14. Remarks. (Inner product formulations) The equality in (1.12) allows us to
restate the definition (3.11) of the coefficients apπ(P ) in the form

anπ(P ) =
∏
∆∈π

(ξ1(Pmin ∆), ξ1(Pmax ∆))L2 .

By substituting the corresponding expressions for apπ1
(P ), aqπ2

(Q) in 3.13, the cross-
covariance equality can be stated in terms of such inner products. Such expressions,
while cumbersome, are useful in suggesting the formulae which prevail for integrals
instead of measures.

Since, cf. (3.4), ξp ∈ FA(Rp,L2), where Rp := ring(Pp), to show that ξp is CA
on Rp we need only show that for any sequence (Rn)∞n=1 in Rp such that Rn ↓ ∅,
we have |ξp(Rn)|L2 → 0. This requires the extension of the covariance theorem 3.13
from Pp to Rp. (Note that since ξp ∈ FA(Rp,L2), it makes sense to speak of the
covariance (ξp(R), ξp(S))L2 for R,S ∈ Rp.) To get this extension, however, we must
confront the fact that whereas the hyperfaces of the intervals P , Q occur in the terms
in the expansions in 3.13 and 3.14, the concept of hyperface has no meaning for the
sets in Rp, still less for sets in Dp such as ellipsoids or toroids. Hence before we can
extend 3.13 beyond the pre-ring of intervals, we must reformulate theorem 3.13 in
an interval-free fashion, in which hyperfaces are effaced, and only the intervals P ,
Q and the anatomy of the spaces Rp, Rq are involved. This is undertaken in §4; see
(4.20) and 4.21. From here on (·, ·) will stand for (·, ·)L2 .

4. The diagonal skeletons and the canonical coefficients

A clue as to how the Wiener equality in 3.13 may be freed from dependence on
intervals and their hyperfaces may be had by considering the simple case where
p = q = 2, and P , Q are coordinate rectangles in R2. Let I = [x = y] be the main
diagonal in R2, φ the transposition in Perm(2), and ℘1 the projection onto the x-axis
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(or the y-axis), and note that for P = P 1 × P 2,

P ∩ I = {(P 1 ∩ P 2)× (P 1 ∩ P 2)} ∩ I;

whence ℘1(P ∩ I) = P 1 ∩ P 2. Hence by Wiener’s equality 1.18(b),

(ξ2(P ), ξ2(Q)) = E{ξ(P 1)ξ(P 2)ξ(Q1)ξ(Q2)}
= `1(P 1 ∩Q1)`1(P 2 ∩Q2) + `1(P 1 ∩Q2)`1(P 2 ∩Q1)

+`1(P 1 ∩ P 2)`1(Q1 ∩Q2)

= `2(P ∩Q) + `2(P ∩Qφ) + `2[℘1(P ∩ I)× ℘1(Q ∩ I)].

Now the RHS of this equality continues to make sense even for non-intervals P , Q in
R2, e.g. for P an ellipse and Q an annulus. This suggests that even for Rp, we may
be able to extend the covariance equality 3.13 beyond the intervals, by bringing in
the diagonal hyperplanes of Rp.

This section begins with the diagonal anatomy of Rp and its effects on the measure
`p. It is overwhelmingly combinatorial. The only measures that show up, apart from
the Lebesgue, are new non-negative ones concocted to serve combinatorial ends.
Vector measure comes in only at the tail end where the nexus with the covariance
equality 3.13 is finally established.

Let p ∈ N+. The space Rp has
(
p
2

)
diagonal hyperplanes obtained by setting two

coordinates equal. Their union plays a crucial role in the theory. We let

∀p > 2, Ipij := {x : x ∈ Rp & xi = xj}, 1 6 i < j 6 p;

Ip1 :=
p−1⋃
i=1

p⋃
j=i+1

Ipij ;

I1
1 := ∅ =: I0

1 ;
∀p ∈ N+, Rp∗ := Rp\Ip1 .

(4.1)

Ip1 is called the first ‘diagonal skeleton’ of Rp. For p = 2, I2
1 is just the main diagonal

of R2. It is convenient to include the trivial cases p = 1 and p = 0 in (4.1), as just
done.

It is evident that the first diagonal skeletons of Rp, Rq and Rp+q are related, and
that the removal of Ip1 from Rp, results in the dissection of Rp into a number of
disjoint ‘half-spaces’, akin to the two diagonal half-planes of R2. The next result
gives the precise renditions of these facts:

4.2. Proposition. Let p, q ∈ N+. Then
(a)

Ip+q1 = (Ip1 × Rq) ∪
p⋃
i=1

p+q⋃
j=p+1

Ip+qij ∪ (Rp × Iq1 ),

Ip+q1 = (Iq1 × Rp) ∪
q⋃
i=1

p+q⋃
j=q+1

Ip+qij ∪ (Rq × Ip1 ),

where the Cartesian products are as in 1.30.
(b) Letting ∀φ ∈ Perm(p),

Spφ := {t : t = (t1 · · · tp) ∈ Rp & tφ(1) < · · · < tφ(p)},
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we have
Rp∗ := Rp\Ip1 =

⋃
φ∈Perm(p)

Spφ & Spφ ‖ Spψ, φ 6= ψ.

The proof, which is routine, is omitted. Since by (4.1), I1
1 = ∅, the first and second

border terms on the RHSs of 4.2(a) drop out according as p = 1 or q = 1.
Also important for our purposes are the intersections of just those diagonal hy-

perplanes that arise from the binary-celled partitions of subsets M of [1, p] of even
cardinality 2k, cf. (1.16):

4.3. Definition. ∀p ∈ N+, ∀M ⊆ [1, p] such that #M is even, & ∀π ∈ ΠM ,

I(π, p) :=
⋂

∆∈π
Ip∆, where Ip∆ := Ipmin ∆,max ∆, cf. (4.1).

For M = ∅ & π ∈ Π∅ = {∅}, cf. (1.16)(a), we define I(π, p) = I(∅, p) := Rp.

It follows readily that

(a) ∀p ∈ N+, ∀k ∈ [0, [p/2]] & ∀π ∈ Π p
k ,

I(π, p) is a (p− k)-dimensional subspace of Rp;
thus dim I(π, p) = p−#π, & when k > 1, I(π, p) ⊆ Ip1 ;

(b) ∀ even p ∈ N+ & ∀π ∈ Π[1,p], dim I(π, p) = p/2;

(c) ∀p, q ∈ N+, ∀π ∈
[p/2]⋃
k=0

Π p
k , I(π, p)× Rq = I(π, p+ q),

cf. (1.16)(d).

(4.4)

We shall call the union of all I(π, p) for π ∈ ΠM , as M ranges over all the 2k
membered subsets of [1, p], the kth diagonal skeleton of Rp, in symbols:

∀k ∈ [0, [p/2]], Ipk :=
⋃
π∈Πp

k

I(π, p).(4.5)

This yields Ip0 := Rp, and in particular I1
0 = R. These higher order skeletons will

be encountered as carriers of certain intrinsic measures, cf. 4.15 and 5.2, and will be
studied further in §7.

Also important are the cross-sections of I(π, p) obtained by fixing the p − 2k
unrestrained coordinates, which we now introduce:

4.6. Definition. Let p ∈ N+ and k ∈ [0, [p/2]]. Then ∀π ∈ Π p
k and

∀h = (h1, h2, . . . , hp−2k) ∈ Rp−2k,

the h-cross-section Ipπ(h) of I(π, p) is defined by

Ipπ(h) := I(π, p) ∩ ℘−1
M ′π

(h),

where Mπ :=
⋃

∆∈π ∆, M ′π := [1, p]\Mπ, and the operator ℘M ′π is defined as in 1.31.
Thus, if M ′π := [1, p]\Mπ = {m1,m2, . . . ,mp−2k}, where m1 < m2 < · · · < mp−2k,

we have

Ipπ(h) := {x : x ∈ I(π, p) & xm1 = h1, xm2 = h2, . . . , xmp−2k = hp−2k}.
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Note. For k = 0 and π ∈ Π p
0 := {∅}, we get

∀h ∈ Rp, Ipπ(h) = Ip∅ (h) = the singleton {h} ∈ Rp.
For p even and k = [p/2], we have h ∈ Rp−2k = R0 := {0}, M ′π = ∅, and π ∈ Π[1,p],
and our definition yields Ipπ(0) := I(π, p).

Example. Let π = {{3, 4}, {5, 8}, {6, 10}} ∈ Π 11
3 . Then ∀h ∈ R5,

I11
π (h) = {t : t ∈ R11 & t3 = t4, t5 = t8, t6 = t10,

& t1 = h1, t2 = h2, t7 = h3, t4 = h4, t11 = h5}.
Obviously,

∀p, k, π & h, as in definition 4.6,
Ipπ(h) is an affine subspace of Rp & dim Ipπ(h) = k,

&
⋃

h∈Rp−2k

Ipπ(h) = I(π, p) ⊆ Ipk , cf. (4.5).
(4.7)

Let A ⊆ Rp. Then with π as in definition 4.6, A ∩ I(π, p) is a cross-section of
A that lies in the diagonal hyperplane I(π, p) of dimension p − k. A ∩ Ipπ(h) is
the h cross-section of this cross-section. The dimensionality of this cross-section is
k, and accordingly its k-dimensional Lebesgue measure is of interest to us when
A is measurable. But the symbol `k{A ∩ Ipπ(h)} makes no sense, since each t ∈
A ∩ Ipπ(h) ⊆ Ipπ(h) ⊆ Rp has p components. What we want, strictly speaking, is
the `k(A∗), where A∗ ⊆ Rk is the set obtained from A ∩ Ipπ(h) by eliminating first
the p− 2k constant coordinates with values h1, h2, . . . , hp−2k, and then from the 2k-
tuple so resulting, further eliminating k superfluous coordinates. This elimination is
conveniently affected as follows:

Let π ∈ Π p
k be given by

π = {∆1,∆2, . . . ,∆k} with ∆α = {iα, jα}, i1 < i2 < · · · < ik.

Then for h = (h1, . . . , hp−2k) ∈ Rp−2k,{
A ∩ Ipπ(h) = {t : t ∈ A & ti1 = tj1 , . . . , tik = tjk

& tm1 = h1, . . . , tmp−2k = hp−2k}.(4.8)

What interests us is the `k measure of the ‘projection’ of A ∩ Ipπ(h) into Rk, i.e. of
the set

{τ = (ti1 , . . . , tik) : t ∈ A ∩ Ipπ(h)}.
Recalling from 1.16(c) that

∀π ∈ ΠM ,
∗π := {min ∆ : ∆ ∈ π} & π∗ := {max ∆ : ∆ ∈ π},

and using the operator ℘π∗ as defined in 1.31, the ‘projection’ we want is just ℘π∗{A∩
Ipπ(h)}, or equivalently, ℘∗π{A ∩ Ipπ(h)}. That this set is germane to our concerns is
clear from the opening paragraph in this section. The next result tells us that for all
intervals A ∈ Pp, the ℘π∗{A ∩ Ipπ(h)} are the very sets appearing in the covariance
equality in 3.13.

4.9. Triviality. Let p ∈ N+, k ∈ [0, [p/2]), A ⊆ Rp and P ∈ Pp. Then ∀π ∈
Π p
k & Mπ =

⋃
∆∈π ∆ & ∀h ∈ Rp−2k,
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(a) ℘∗π{A ∩ Ipπ(h)} = ℘π∗{A ∩ Ipπ(h)};
(b)

℘π∗{P ∩ Ipπ(h)} =

{
P (π), h ∈ PM ′π ,
∅, h ∈ Rp−2k\PM ′π , cf. (3.10);

(c) `k[℘π∗{P ∩ Ipπ(h)}] = `k{P (π)}χPM′π (h) = apπ(P )χPM′π (h), cf. (3.11);
(d) for k = 0, we have π = ∅, h ∈ Rp & `0[℘π∗{P ∩ Ipπ(h)}] = χP (h);
(e) for even p and k = p/2, we have π ∈ Π[1,p], h = 0, &

`p/2[℘π∗{P ∩ Ipπ(0)}] = `p/2{P (π)}.

Proof. (a) is clear from the expression (4.8) for A ∩ Ipπ(h).
(b) Let first k ∈ [1, [p/2]] and

M ′π = {m1, . . . ,mp−2k}, m1 < · · · < mp−2k.

If ℘π∗{P ∩ Ipπ(h)} is non-void, so is P ∩ Ipπ(h), and hence ∃t such that t ∈ P ∩ Ipπ(h).
Since t ∈ Ipπ(h), therefore h = (h1, . . . , hp−2k) = (tm1 , . . . , tmp−2k). But this last vector
is in PM ′π , since t ∈ P . Thus, h ∈ PM ′π whenever ℘π∗{P ∩ Ipπ(h)} 6= ∅.

Next let h ∈ PM ′π and y ∈ ℘π∗{P ∩ Ipπ(h)}. Then letting π = {∆1, . . . ,∆k} with
∆α = {iα, jα}, iα < jα, we have, since x ∈ Ipπ(h),

tiα = tjα ∈ P iα ∩ P jα = P (∆α).

Since π∗ = {j1, . . . , jk}, it follows that

℘π∗(t) = (tj1 , . . . , tjk) ∈ P (∆1)× · · · × P (∆k) =: P (π).

Thus ℘π∗{A ∩ Ipπ(h)} = P (π). Thus (b) holds for k ∈ [1, [p/2]].
Next for k = 0, we have π = ∅, and cf. the note after 4.6, Ipπ(h) = {h}. Thus

P ∩ Ipπ(h) = P ∩ {h} =

{
{h} if P ∩ {h} 6= ∅,
∅ if P ∩ {h} = ∅.

Since π∗ = ∅, it follows from (1.33) that

℘π∗{P ∩ Ipπ(h)} =

{
{0} if P ∩ {h} 6= ∅,
∅ if P ∩ {h} = ∅.(1)

Since for π = ∅, P (π) = {0}, cf. (3.10), and moreover Mπ = ∅, M ′π = [1, p] and
PM ′π = P , (1) can be rewritten:

℘π∗{P ∩ Ipπ(h)} =

{
P (π) for h ∈ PM ′π ,

0 for h ∈ Rp\PM ′π .
Thus (b) again holds.

(c) follows at once from (b), and the equality apπ(P ) := `k{P (π)} in (3.11).
(d) For k = 0, π = ∅ by (1.16)(a), and (1) yields `0[℘π∗{P ∩ Ipπ(h)}] = χP (h).
(e) Since for even p, Π p

p/2 = Π[1,p], therefore π ∈ Π[1,p] and so PM ′π = P∅ = {0}, cf.
1.35(a). From this and part (b) it follows that ℘π∗{P ∩ Ipπ(h)} = P (π), whence (e).

The LHSs of 4.9(b) and 4.9(c) will continue to make sense when the interval P is
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replaced by any set D ⊆ Rp, provided that the corresponding set ℘π∗{D∩Ipπ(h)} falls
in the δ-rings D#π, the domain of the Lebesgue measure `#π. The question arises
as to whether this is ensured by the membership of D in Dp. In addressing this and
related questions, the next proposition is crucial. It is convenient to fix first a short
notation for the complicated sets that we have encountered and shall continue to do:

4.10. Notation. ∀p ∈ N+, ∀k ∈ [0, [p/2]], ∀π ∈ Π p
k , ∀h ∈ Rp−2k & ∀A ⊆ Rp,

Apπ(h) := ℘π∗{A ∩ Ipπ(h)} = ℘∗π{A ∩ Ipπ(h)}, cf. 4.9(a).

Note. For k = 0, we have by (1.16)(a), Π p
0 = {∅}, i.e. π = ∅ = π∗. Also, cf. note

to 4.6, ∀h ∈ Rp, Ip∅ = {h}. Hence by (1.33), ∀h ∈ Rp,

Ap∅(h) = p∅{A ∩ {h}} =

{
{0} if h ∈ A,
∅ if h ∈ Rp\A.

For even p and k = [p/2], we have (cf. note to 4.6), π ∈ Π[1,p], h ∈ R0 = {0} and
Ipπ(0) = I(π, p), whence

∀A ⊆ Rp, Aπ(0) = ℘π∗{A ∩ I(π, p)}.
4.11. Proposition. (Boolean homomorphism) Let p ∈ N+ and k ∈ [0, [p/2]].
Then ∀π ∈ Π p

k & ∀h ∈ Rq−2k, the mapping A→ Apπ(h) is a Boolean homomorphism7

on the algebra of all subsets of Rp onto the algebra of all subsets of Rk.

Proof. Let π ∈ Π p
k & h ∈ Rp−2k, and let ∀λ ∈ Λ, an index set, Aλ ⊆ Rp. For

simplicity we shall write Aπ(h) instead of Apπ(h). We then assert that[⋃
λ∈Λ

Aλ
]
π

(h) =
⋃
λ∈Λ

[(Aλ)π(h)],(I) [⋂
λ∈Λ

Aλ
]
π

(h) =
⋂
λ∈Λ

[(Aλ)π(h)].(II)

Proof of (I). Since by (4.10), LHS(I) := ℘π∗ [∪λ∈ΛA
λ) ∩ Ipπ(h)] and RHS(I) :=

∪λ∈Λ℘π∗ [Aλ ∩ Ipπ(h)], the equality follows from simple relation theory.
Proof of (II). For the intersection, rudimentary relation theory yields merely the

inclusion:

℘π∗

[(⋂
λ∈Λ

Aλ
)
∩ Ipπ(h)

]
⊆
⋂
λ∈Λ

℘π∗{Aλ ∩ Ipπ(h)}.

But by virtue of the occurrence of the set Ipπ(h), the reverse inclusion also holds. We
leave the proof of this to the reader.

Next, ∀τ ∈ Rk, we have τ = ℘π∗(t), where t is given by

tm1 = h1, . . . , tmp−2k = hp−2k; ti1 = tj1 = τ1, . . . , tik = tjk = τk.

Thus ∀h ∈ Rp−2k,
(Rp)π(h) = Rk.(III)

7 That the mapping is not one–one, and therefore not a Boolean isomorphism, is easily seen on taking
p = 2, k = 1, h = 0 and A = P 1 × P 2, an interval. Then A2

π(h) = P 1 ∩ P 2. Thus, for P 1 6= P 2,
(P 1 × P 2)2

π(h) = (P 2 × P 1)2
π(h), even though P 1 × P 2 6= P 2 × P 1.
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Finally, for A′ := Rp\A, it follows from Rp = A ∪A′, and (III) and (I), that

Rk = (Rp)π(h) = Aπ(h) ∪ (A′)π(h).

But by (II), Aπ(h) ∩ (A′)π(h) = (A ∩A′)π(h) = ∅. Hence

(A′)π(h) = {Aπ(h)}′.(IV)

By (I)–(IV), we are done.

Proposition 4.11 has as a corollary the result we are after:

4.12. Corollary. Let p ∈ N+ and k ∈ [0, [p/2]]. Let the symbol F stand for one of
P, R, D, B. Then

(a) E ∈ Fp =⇒ ∀π ∈ Π p
k & ∀h ∈ Rp−2k, Ep

π(h) ∈ Fk; i.e. the mapping A→ Apπ(h)
preserves the measurability classes.

(b) ∀π ∈ Π p
k , ∀h ∈ Rp−2k & ∀E ∈ Dk, ∃D ∈ Dp 3 Dp

π(h) = E; i.e. the mapping
A→ Apπ(h) is on Dp onto Dk.

Proof. (a) Let π ∈ Π p
k and h ∈ Rp−2k. First, let F be P, and let P ∈ Pp. Then since

P (π) := X∆∈πP (∆) and ∅ are in Pk, therefore by 4.9(b), P pπ (h) := ℘π∗{P ∩ Ipπ(h)} ∈
Pk.

Next, let F be R. Since every R ∈ Rp is a finite union of sets in Pp, it follows
readily from the result for P, and the homomorphic property of the mapping that
the implication, R ∈ Rp =⇒ Rpπ(h) ∈ Rk holds.

Next, let F be D. Then we have to show that

D∗p := {D : D ∈ Dp & Dp
π(h) ∈ Dk} = Dp.(I)

But, as just shown, Rp ⊆ D∗p, and cf. [MN, Part III, App. B.5], Dp is the δ-monotone
class generated by Rp. In symbols, we have

Dp = δ-mon(Rp) ⊆ δ-mon(D∗p) ⊆ Dp,
i.e. Dp = δ-mon(D∗p). Hence to prove (I) we need only show that D∗p is a δ-monotone
class. But this can be easily shown from the implications:

∀n > 1, Dn ∈ Dp & Dn ↓ D =⇒ (Dn)pπ(h) ↓ Dp
π(h),

∀n > 1, Dn ∈ Dp & Dn ↑ E ∈ D =⇒ (Dn)pπ(h) ↑ Dp
π(h),

which are clear from the homomorphism of the mapping. Thus (I).
The homomorphism likewise yields the desired implication when F stands for B.

Thus (a).
(b) Let M ′π := [1, p]\Mπ = {m1, . . . ,mp−2k}, m1 < · · · < mp−2k,

π = {{i1, j1}, . . . , {ik, jk}} ∈ ΠM , & h ∈ Rp−2k.

Let E ∈ Dk, and define

D := {t : t ∈ Rp & (tj1 , . . . , tjk) ∈ E &

∀α ∈ [1, k], tiα = tjα & ∀β ∈ [1, p− 2k], tβ = hmβ}.(1)

Then obviously

D ∈ Bp, D ⊆ Ipπ(h) & E = ℘π∗(D) = ℘π∗{D ∩ Ipπ(h)} =: Dp
π(h).(2)

Now take [a, b] so large that

E ⊆ [a, b]k & h ∈ [a, b]p−2k.
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Then by (1), D ⊆ [a, b]p is bounded. Hence by (2),

D ∩ Ipπ(h) = D ∈ Dp.(3)

By (2) and (3), E = Dp
π(h), where D ∈ Dp. Thus (b).

Now by 4.9(c), the `k measure of the set P pπ (h), i.e. of ℘π∗{P ∩Ipπ(h)}, involves the
very coefficients apπ(P ), defined in (3.11), which appear in the covariance equalities
in theorem 3.13. This suggest that we standardize the notations for the `k measure
of sets Dp

π(h), where D ∈ Dp. We have the following definition which will play a
central role in the rest of this paper:

4.13. Main definition. (Canonical coefficients) Let p ∈ N+, k ∈ [0, [p/2]] and π ∈ Π p
k .

Then ∀D ∈ Dp and ∀h ∈ Rp−2k,

λpπ(D,h) := `k{Dp
π(h)}, γpk(D,h) :=

∑
π∈Πp

k

λpπ(D,h).

Note. For k = 0, it readily follows from the note to 4.10 and the definition of `0
in 3.1 that ∀D ∈ Dp, and π = ∅,

∀h ∈ Rp, λp∅(D,h) = χD(h) = γp0(D,h),

i.e. γp0(·, h) is the unit mass with carrier {h}.
On taking k = [p/2] we get for even p, Rp−2k = R0 = {0}, and so ∀D ∈ Dp,

λpπ(D, 0) = `p/2{Dp
π(0)} = `p/2[℘π∗{D ∩ I(π, p)}],

γpp/2(D, 0) =
∑

π∈Π[1,p]

`p/2[℘π∗{D ∩ I(π, p)}];

and for odd p, Rp−2k = R1, and so ∀D ∈ Dp, ∀π ∈ Π p
(p−1)/2 & ∀h ∈ R1,

λpπ(D,h) = `(p−1)/2{Dp
π(h)} = `(p−1)/2[℘π∗{D ∩ Ipπ(h)}],

γp(p−1)/2(D,h) =
p∑
i=1

∑
π∈Π[1,p]\{i}

`(p−1)/2[℘π∗{D ∩ Ipπ(h)}].

The canonical coefficients are set-functions in the first argument and point func-
tions in the second. We shall now show that the former are CA measures carried by
the diagonal skeletons, and that the latter are bounded measurable functions with
bounded support. The last is important since, as we shall see, their integrability is
crucial. It is worthwhile to first record the `p-negligibility of the skeleton Ip1 :

Ip1 :=
p−1⋃
i=1

p⋃
j=i+1

Ipi,j ∈ N`p , cf. definition A.2.(4.14)

First, since the diagonal hyperplane Ipi,j is closed, therefore each Ipi,j is a Borel subset
of Rp, and so is their finite union Ip1 . Next, since dim Ipi,j = p − 1, it is clear that
Ipi,j ∈ N`p , and hence their finite union Ip1 ∈ N`p . Thus (4.14).

4.15. Proposition. Let p ∈ N+, k ∈ [1, [p/2]], and the π ∈ Π p
k . Then

(a) ∀h ∈ Rp−2k, λpπ(·, h) ∈ CA(Dp,R0+), and has Ipπ(h), Ipk and Ip1 as carriers, and
so λpπ(·, h) & `p(·) are mutually singular;
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(b) ∀p ∈ Pp & ∀h ∈ Rp−2k, λpπ(P, h) = `k{P (π)}χPM′π (h);
(c) ∀D ∈ Dp, λpπ(D, ·) ∈ M(Bp−2k, B`(R0+)), and λpπ(D, ·) is bounded by `1(A)k,

and has support Ap−2k in Dp−2k, where A ∈ D1 is such that D ⊆ Ap.
Proof. (a) Let h ∈ Rp−2k. Trivially, λpπ(·, h) is FA on Dp. But if ∀n > 1, Dn ∈

Dp & Dn ↓ ∅, as n→∞, then obviously ℘π∗{Dn∩Ipπ(h)} ↓ ∅, and hence `k[℘π∗{Dn∩
Ipπ(h)}] ↓ 0, i.e. λpπ(Dn, h) ↓ 0, as n → ∞. By the Kolmogorov criterion, λpπ(·, h) is
CA on Dp. Next from definitions 4.13 and (4.10), namely,

∀h ∈ Rp−2k, λpπ(D,h) = `k[℘π∗{D ∩ Ipπ(h)}],
it follows that Ipπ(h) is a carrier of λpπ(·, h). But by (4.7), (4.4) and (4.14),

Ipπ(h) ⊆ I(π, p) ⊆ Ipk ∩ Ip1 ∈ N`p .
Thus (a).

(b) This emerges on combining definition 4.13 and the result 4.9(c).
(c) Writing M :=M(Bp−2k,B[0,∞)), let

F := {F : F ∈ Dp & λpπ(F, ·) ∈M}.
Then as the reader can easily check, Pp ⊆ F , whence it follows that Dp = δ-mon(F).
But since by (a), λpπ(·, h) is CA, F is itself a δ-monotone class, and we have Dp = F .
Thus ∀D ∈ Dp, λpπ(D, ·) ∈M.

Finally, ∃P := Ap ∈ Pp such that D ⊆ P . Thus by (b),

0 6 λpπ(D, ·) 6 `k{P (π)}χPM′π (·),
i.e. λpπ(D, ·) has the bounded support PM ′π = Ap−2k in Dp−2k, cf. (1.35), and is
bounded above by `k{P (π)} = `1(Ak). This establishes (c).

As γpk is just a finite sum of λpπ, therefore by 4.15(a),
⋃
π∈Πp

k
Ipk(h) is a carrier of

γpk(·, h). But, cf. (4.7), Ipk is a larger set. We thus get the following analogue of 4.15
for γpk :

4.16. Corollary. Let p ∈ N+ and k ∈ [1, [p/2]]. Then
(a) ∀h ∈ Rp−2k, γpk(·, h) ∈ CA(Dp,R0+) and has the sets

⋃
π∈Πp

k
Ipk(h), Ipk and Ip1

as carriers, hence γpk(·, h) & `p(·) are mutually singular;
(b) ∀D ∈ Dp, γpk(D, ·) ∈M(Bp−2k,B[0,∞)), and γpk(D, ·) is bounded by(

p

k

)
α2k`1(A)k,

and has support ⋃
π∈Πp

k

(Ap)M ′π = Ap−2k in Dp−2k,

where A ∈ D1 is such that D ⊆ Ap.
We must also attend to the total variations of the measure λpπ, γpk , as they play a

part in the sequel:

4.17. Notation. Let p ∈ N+, k ∈ [1, [p/2]], π ∈ Π p
k & h ∈ Rp−2k, and let

µπ,h(·) := λpπ(·, h) & νk,h(·) := γpk(·, h) on Dp.
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Then we shall write

|λpπ|(·, h) := |µπ,h|(·) & |γpk |(·, h) := |νk,h|(·) on Bp.

We then have the following extensions of the first and second equalities in definition
4.13 from Dp to Bp.
4.18. Triviality. Let p, k, M , π & h be as in 4.17. Then

(a) ∀A ∈ Bp, |λpπ|(A, h) = |`k|{Apπ(h)};
(b) A ∈ (Dp)λpπ(·,h) ⇐⇒ Apπ(h) ∈ D̄k, cf. 1.9;
(c)

|γpk |(·, h) =
∑
π∈Πp

k

|λpπ|(·, h) on Bp;

(d) ∀A ∈ Bp,
|γpk |(A, h) =

∑
π∈Πp

k

|`k|[Apπ(h)];

(e)

A ∈ (Dp)γp
k

(·,h) ⇐⇒
⋃
π∈Πp

k

Apπ(h) ∈ D̄k.

Proof. (a), (b) The proofs, which are routine, are omitted.
(c) This follows at once from (a) and the fact that for non-negative measures µi,

|∑r
k=1 µi| =

∑r
i=1 |µi|;

(d) Substituting for |λpπ|(A, h) from (a) into the RHS in (c), we get (d).
(e) We have

A ∈ (Dp)|γp
k
|(·,h) ⇐⇒ RHS(b) <∞ ⇐⇒ ∀π ∈ Π p

k , |`k|[Apπ(h)] <∞
⇐⇒ ∀π ∈ Π p

k , Apπ(h) ∈ (Dk)`k =: D̄k.
This last condition is equivalent to that on the RHS(e).

Finally we shall show that for sets D in the pre-ring Pp, the Bp−2k measurable
functions γpπ(D, ·) reduce to simple functions, and that their integration over appro-
priate subspaces of Rp yield the expressions on the RHSs of the covariance equality
for two intervals, obtained in theorem 3.13.

Combining 4.15(b) and 4.9(c), we get

λpπ(P, h) = apπ(P )χPM′π (h) = `k{P (π)}χPM′π (h),(4.19)

and this readily yields

∀p ∈ N+, ∀k ∈ [0, [p/2]], ∀π ∈ Π p
k , ∀h ∈ Rp−2k & ∀P ∈ Pp,

λpπ(P, h) = apπ(P )χPM′π (h) & γpk(P, h) =
∑
π∈Πp

k

apπ(P )χPM′π (h),

γpk(P, ·) =
∑
π∈Πp

k

apπ(P )χPM′π (·) ∈ S (Pp−2k,R),

where S (F ,R) is the class of real valued simple functions with cells
in F , cf. 1.1(c); in particular, γp0(P, ·) = χP (·) = λp∅(P, ·) on Rp.

(4.20)
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Note. The last two equations for the case k = 0 can be justified as follows. In case
k = 0, by (1.16)(a), Π p

0 = {∅} and π = ∅. Therefore, ∀h ∈ Rp,
γp0(P, h) :=

∑
π∈Πp

0

λpπ(P, h) = λp∅(P, h).

But by (4.9)(d), λp∅(P, h) = `0[℘∅∗{P ∩ Ip∅ (h)}] = χP (h).

Now let, as in the cross-covariance theorem 3.13, p, q ∈ N+ be such that p+q = 2r
and q 6 p, k ∈ [1, [q/2]], φ ∈ Perm(q − 2k), and let M ⊆ [1, p], N ⊆ [1, q] be
such that #M ′ = #N ′ = q − 2k. Then the functions γp1

2 (p−q)+k(P, ·), γqk(Q, ·) being
Pq−2k-simple, are readily integrable, and it easily follows from (4.20) that∫

Rq−2k
γp1

2 (p−q)+k(P, h) · γqk(Q, hφ)`q−2k (dh)

=
∑

π1∈Πp
1
2 (p−q)+k

∑
π2∈Π q

k

apπ1
(P )aqπ2

(Q)`q−2k{PM ′π1
∩ (QM ′π2

)φ}.

The RHS matches the expression for Γ pq
k (P,Q) in theorem 3.13, except for the ab-

sence of the summation over the class Perm(q−2k). Thus, upon substituting in 3.13
the expression on the LHS, we get at once the following version of the covariance
equality, free of allusion to the hyperfaces of the intervals P , Q:

4.21. Theorem. (Wiener’s cross-covariance equality, ‘hyperface-free’ form)
Let

(i) p, q ∈ N+ be such that p+ q = 2r is even and q 6 p,
(ii) P ∈ Pp, Q ∈ Pq.
Then
(a) when p > q,

(ξp(P ), ξq(Q)) =
[q/2]∑
k=0

Γ pq
k (P,Q) ∈ R0+,

where

Γ pq
0 (P,Q) =

∑
φ∈Perm(q)

∫
Rq
γp(p−q)/2(P, h)χQ(hφ)`q (dh);

for k ∈ [1, [q/2]− 1],

Γ pq
k (P,Q) =

∑
φ∈Perm(q−2k)

∫
Rq−2k

γp1
2 (p−q)+k(P, h)γqk(Q, hφ)`q−2k (dh),

&

Γ pq
[q/2](P,Q) =


γpp/2(P, 0) · γqq/2(Q, 0), q and p even,∫
R
γp(p−1)/2(P, h)γq(q−1)/2(Q, h)`1 (dh), q and p odd;

(b) when p = q,

(ξq(P ), ξq(Q)) =
[q/2]∑
k=0

Γ qq
k (P,Q),
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where now
Γ qq

0 (P,Q) =
∑

φ∈Perm(q)

`q(P ∩Qφ),

and for k ∈ [1, [q/2]], Γ qq
k (P,Q) is given by the same formula as in (a), except that

now p = q.

Likewise for the expectation of ξp(P ), in the non-trivial case, p even, we have:

4.22. Proposition. ∀ even p ∈ N+ & ∀P ∈ Pp, EP{ξp(P )} = γpp/2(P, 0).

Proof. Let p be even and k = p/2. Then since Π p
p/2 = Π[1,p], we have Mπ = [1, p]

for any π ∈ Π p
p/2 and therefore PM ′π = P∅ = {∅}. Thus

∀π ∈ Π p
p/2, χPM′π

(0) = χ{0}(0) = 1.(1)

It follows from (3.12), (1) and (4.20) that

EP{ξp(P )} =
∑

π∈Πp

p/2

apπ(P ) =
∑

π∈Πp

p/2

apπ(P )χPM′π (0) = γpp/2(P, 0).

5. The countable additivity of ξp on the ring Rp and its extendibility
to the δ-ring Dp

We know, cf. (3.4), that ∀p ∈ N+, ξp ∈ FA(Rp,L2). Consequently it makes sense
to speak of the covariance (ξp(R), ξq(S)), where R ∈ Rp, S ∈ Rq. The question
arises as to whether this covariance satisfies the equality given in 4.21. To address
this question, we must first define the kernels Γ pq

k appearing in 4.21 for sets outside
Pp, Pq:
5.1. Definition. (The canonical kernels) Let (i) p, q ∈ N+ be such that p+ q = 2r is
even and q 6 p, (ii) k ∈ [0, [q/2]], (iii) D ∈ Dp & E ∈ Dq. Then

Γ pq
k (D,E) :=

∑
φ∈Perm(q−2k)

∫
Rq−2k

γp1
2 (p−q)+k(D,h)γqk(E, hφ)`q−2k (dh).

This yields in particular, cf. 4.21:

Γ pq
0 (D,E) :=

∑
φ∈Perm(q)

∫
Rq
γp(p−q)/2(D,h)χE(hφ)`q (dh),

Γ pp
0 (D,E) :=

∑
φ∈Perm(p)

`p(D ∩ Eφ),

and

Γ pq
[q/2](D,E) =


γpp/2(D, 0) · γqq/2(E, 0), q and p even,∫
R
γp(p−1)/2(D,h)γq(q−1)/2(E, h)`1 (dh), q and p odd.

We shall refer to the Γ pq
k (·, ·) as the canonical kernels. They are all well defined, since

by 4.16(b), the integrands are bounded, boundedly supported, and measurable.
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These kernels are CA measures in each variable. More precisely we have the fol-
lowing result, which rests in effect on the properties of the canonical coefficients γpk ,
stated in corollary 4.16.

5.2. Lemma. Let p, q, r, k be as in 5.1. Then
(a) ∀E ∈ Dq, Γ pq

k (·, E) ∈ CA(Dp,R0+), and has Ip1
2 (p−q)+k as a carrier;

(b) ∀D ∈ Dp, Γ pq
k (D, ·) ∈ CA(Dq,R0+), and has Iqk as a carrier;

(c) ∀D ∈ Dp and ∀E ∈ Dq,

Γ pq
k (D,E) = (q − 2k)!

∫
Rq−2k

γp1
2 (p−q)+k(D,h)γ̃k(E, h)`q−2k (dh),

where f̃ denotes the symmetrization of the function f .

Proof. (a) Fix E ∈ Dq and let ∀n ∈ N+, Dn ∈ Dp & Dn ↓ ∅. Then by 4.16(a),

fn(h) := γp1
2 (p−q)+k(Dn, h)γqk(E, hφ) ↓ 0, as n→∞.

Next, cf. 4.16(b), fn(·) is bounded and has bounded support. Hence, by Lebesgue’s
dominated convergence theorem,

Γ pq
k (Dn, E) :=

∑
φ∈Perm(q−2k)

∫
Rq−2k

fn(h)`q−2k (dh) ↓ 0, as n→∞,

i.e. the FA measure Γ pq
k (·, E) satisfies the Kolmogorov criterion. Hence Γ pq

k (·, E) is
CA on Dp.

Finally, Ip1
2 (p−q)+k being, by 4.16(a), a carrier of γp1

2 (p−q)+k(·, h) for each h in Rq−2k,
we see readily from the formula in definition 5.1, that it is also a carrier of Γ pq

k (·, E).
Thus (a).

(b) is proved similarly.
(c) Take

∑
φ∈Perm(q−2k) inside the integral in 5.1(iii) and recall that

(q − 2k)!γ̃qk(E, h) =
∑

φ∈Perm(q−2k)

γqk(E, hφ).

5.3. Definition. Let p, q ∈ N+, q 6 p, and let Fp, Fq be subfamilies of Dp, Dq to
which the measures ξp, ξq extend. Then we shall say that the covariance equality
holds for Fp, Fq iff ∀D ∈ Fp & ∀E ∈ Fq,

(ξp(D), ξq(E))L2 = 0, if p+ q is odd

and, cf. definition 5.1,

(ξp(D), ξq(E))L2 =
[q/2]∑
k=0

Γ pq
k (D,E) if p+ q is even.

We now make this affirmation for the rings Rp, Rq:
5.4. Proposition. ∀p, q ∈ N+, the covariance equality holds for the rings Rp, Rq.

Proof. Let p, q ∈ N+, q 6 p, R ∈ Rp and S ∈ Rq. Then R =
⋃m
i=1 Pi, S =

⋃n
j=1Qj ,
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where Pi ∈ Pp are ‖ and Qj ∈ Pq are ‖. By definition

ξp(R) =
m∑
i=1

ξp(Pi), ξq(S) =
n∑
j=1

ξq(Qj),(1)

whence

(ξp(R), ξq(S)) =
m∑
i=1

n∑
j=1

(ξp(Pi), ξq(Qj)).(2)

Now if p+q is odd, then by (3.5) each term on the RHS(2) vanishes and so therefore
does the LHS. Next, if p+ q is even then by theorem 4.21, for each i, j,

(ξp(Pi), ξq(Qj)) =
[q/2]∑
k=0

Γ pq
k (Pi, Qj).

Substituting in (2) and changing the order of summation, and using the fact 5.2 that
Γ pq
k (·, E) and Γ pq

k (D, ·) are FA, it is easily shown that

Γ pq
k (R,S) = Γ pq

k

( m⋃
i=1

Pi,
n⋃
j=1

Qj

)
=

m∑
i=0

n∑
j=0

Γ pq
k (Pi, Qj);

whence (2) reduces to

(ξp(R), ξq(S)) =
[q/2]∑
k=0

Γ pq
k (R,S).

To go beyond rings, we need the following:

5.5. Proposition. ∀p ∈ N+, ξp ∈ CA(Rp,L2) and is locally strongly bounded on
Rp, i.e.

∀p ∈ N+, Rn ∈ Rp ∩ 2R, R ∈ Rp & Rn are ‖ =⇒ lim
n→∞

ξp(Rn) = 0.

Proof. An application of the covariance equality in 5.3 with q = p & S = R =
Rn ∈ Rp & Rn ⊆ R1 yields

|ξ(Rn)|2 =
[p/2]∑
k=0

Γ pp
k (Rn, Rn) 6

[p/2]∑
k=0

Γ pp
k (Rn, R1).(1)

First let Rn ↓ ∅, as n → ∞. Since by lemma 5.2(a), each Γ pp
k (·, R1) is CA on

Dp, therefore each limn→∞ Γ pp
k (Rn, R1) = 0. Next, let Rn ∈ Rp ∩ 2R, R ∈ Rp

and the Rn be ‖. Then each non-negative measure Γ pp
k (·, R1), being CA on Dp (by

5.2), is certainly locally strongly bounded on Dp, and therefore on Rp. Thus each
limn→∞ Γ pp

k (Rn, R1) = 0. Hence by (1), on letting n→∞, we have |ξp(Rn)|2 ↓ 0, in
both cases. We thus obtain both the countable additivity of ξp on Rp, and its local
strong boundedness on Rp.

Now thanks to a theorem of Brooks & Dinculeanu (1974) we know that the prop-
erties of countable additivity and ‘local strong boundedness’, affirmed in proposition
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5.5 are necessary and sufficient to ensure the existence of a countably additive ex-
tension of ξp to Dp := δ-ring(Rp). We accordingly conclude that:

5.6. Theorem. ∀p ∈ N+, the measure ξp has an extension to Dp which is countably
additive. Denoting this extension by the symbol ξp itself, we have

ξp ∈ CA(Dp,L2).

We show next that the covariance equality extends to δ-rings. The proof rests on
the countable additivity of ξp:

5.7. Proposition. ∀p, q ∈ N+, the covariance equality holds for Dp, Dq, cf. 5.3.

Proof. Let first p+ q be even. Then by 5.6,

∀Q ∈ Pq, (ξp(·), ξq(Q)) ∈ CA(Dp,R),

and by 5.2(a)

∀Q ∈ Pq,
[p/2]∑
k=0

Γ pq
k (·, Q) ∈ CA(Dp,R).

These two CA measures on Dp are, by theorem 4.21(a), equal on Pp. Hence by the
identity principle A.8, they are equal on Dp. Thus

∀D ∈ Dp, (ξp(D), ξq(Q)) =
[p/2]∑
k=0

Γ pq
k (D,Q).(1)

Next, by 5.6,
∀D ∈ Dp, (ξp(D), ξq(·)) ∈ CA(Dq,R),

and the same argument shows that

∀D ∈ Dp & ∀E ∈ Dq, (ξp(D), ξq(E)) =
[p/2]∑
k=0

Γ pp
k (D,E).(2)

Next let p + q be odd, D ∈ Dp and E ∈ Dq. It is well known that there exist
sequences (Pn)∞1 in Pp and (Qn)∞1 in Pq such that ξp(Pn) → ξp(D) and ξq(Qn) →
ξq(E). Thus

(ξp(D), ξq(E)) = lim
n→∞

(ξp(Pn), ξq(Qn)) = 0, by (3.5).(3)

By (2) and (3) we are done.

Next by the Schwartz inequality, ∀f ∈ L2, |EP(f)| 6 |f |L2 |1(·)|L2 = |f |L2 . In
particular,

∀D ∈ Dp, 0 6 |EP{ξp(D)}| 6 |ξp(D)|L2 .(5.8)
This, together with the countable-additivity of ξp, allows us to extend the results
4.22 and 1.19(b) on the expectation of ξp(P ) to the δ-ring Dp:
5.9. Proposition. (The expectation of ξp on Dp) (a) ∀ even p ∈ N+ & ∀D ∈ Dp,
we have

EP{ξp(D)} = γpp/2(D, 0) =
∑

π∈Π[1,p]

`p/2{Dp
π(0)} =

∑
π∈Π[1,p]

`p/2[℘π∗{D ∩ I(π, p}],
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&
[EP{ξp(D)}]2 = Γ pp

p/2(D,D).

(b) ∀ odd p ∈ N+ & ∀D ∈ Dp, EP{ξp(D)} = 0.

Proof. (a) To prove the first equality, note that since EP ∈ L′2, therefore

EP{ξp(·)} ∈ CA(Dp,R).

Since by 4.16(a), γpp/2(·, 0) ∈ CA(Dp,R), and by 4.22, the two measures are equal on
Pp, therefore by the identity principle A.8, they are equal on Dp. This proves the
equality on the left. The others follow from definitions 4.13 and (4.10).

Next, combining definition 5.1 (et seq.) and the last equality, we get

Γ pp
p/2(D,D) = γpp/2(D, 0)γpp/2(D, 0) = [E{ξp(D)}]2.

This completes the proof of (a).
(b) This is an easy consequence of the result (3.9), since each

ξp(D) = lim
n→∞

ξp(Pn)

for suitable Pn ∈ Pp.
We turn next to the factorization of the measure ξp+q(D × E), where D ∈ Dp,

E ∈ Dq. Ancillary to this factorization is the classical factorization of the δ-ring Dp+q
itself:

∀p, q ∈ N+, Dp+q = δ-ring(Dp ×Dq).(5.10)
The proof that ξp+q = ξp × ξq is not obvious, since | · |L2 is not a Banach algebra
norm, and simple inferences such as ξ(Dn) → 0 in L2, implies that ξ(Dn)η(E) → 0
in L2, where E ∈ Dq is fixed, fail. However, for the specific measures ξp, ξq, this
implication does hold, and the proof can be completed. But it involves several steps.

5.11. Theorem. (Product measure) Let p, q ∈ N+. Then ξp+q = ξp × ξq, i.e. we
have

∀D ∈ Dp & ∀E ∈ Dq, D × E ∈ Dp+q & ξp+q(D × E) = ξp(D) · ξq(E).

Proof. We shall show in succession that:

∀R ∈ Rp & ∀S ∈ Rq, ξp(R)ξq(S) = (ξp × ξq)(R× S);(I)

∀R ∈ Rq, ξp(R)ξq(·) ∈ CA(Dq,L2);(II)

∀R ∈ Rp & ∀E ∈ Dq, ξp(R)ξq(E) = (ξp × ξq)(R× E);(III)

∀E ∈ Dq, ξp(·)ξq(E) ∈ CA(Dp,L2);(IV)

∀D ∈ Dp & ∀E ∈ Dq, ξp(D)ξq(E) = (ξp × ξq)(D × E).(V)

Proof of (I). Let P = P 1 × · · · × P p ∈ Pp and Q = Q1 × · · · × Qq ∈ Pq. Then it
follows from the definition (1.13) of ξp, ξq, ξp+q that

ξp+q(P ×Q) = ξ(P 1) · · · ξ(P p) · ξ(Q1) · · · ξ(Qq) = ξp(P ) · ξq(Q).

Thus
∀P ∈ Pp & ∀Q ∈ Pq, ξp+q(P ×Q) =: ξp(P ) · ξq(Q).(1)

Since sets in Rp and Rq are finite disjoint unions of intervals in Pp and Pq, and ξp,
ξq, ξp+q are FA, therefore (I) easily follows from (1).
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Proof of (II). Let R ∈ Rp. Then by (I),

ξp(R)ξq(·) = ξp+q(R× ·) on Rq.(2)

But by theorem 5.6, ξp+q is CA on Dp+q, i.e. by (5.10) on δ-ring(Dp×Dq). Therefore,
obviously ξp+q(R × ·) is CA on Dq. It is therefore also locally strongly bounded on
Dq, and therefore on Rq. Thus by (2), ξp(R)ξq(·) is CA and locally strongly bounded
on Rq. But this, by the Brooks & Dinculeanu theorem (cited on p. 1138), yields (II).

Proof of (III). Let R ∈ Rp. Since ξp+q is CA on Dp+q and therefore on Dp × Dq,
we have ξp+q(R × ·) ∈ CA(Dq,L2). And by (II), ξp(R)ξq(·) ∈ CA(Dq,L2). Also by
(I), these measures are equal to Rq. Hence by the identity principle A.8, they are
equal on δ-ring(Rq), i.e. on Dq. Thus (III).

Proof of (IV). Let E ∈ Dq. Then by (III),

ξp(·)ξq(E) = ξp+q(· × E) on Rp.(3)

Then as in the proof of (II), it follows that ξp(·)ξq(E) is both CA and locally strongly
bounded on Rp, whence (IV) follows from the Brooks & Dinculeanu theorem (1974).

Proof of (V). Let E ∈ Dq. Then by 5.6 and (IV), both ξp+q(· ×E) and ξp(·)ξq(E)
are CA on Dp, and by (III) they are equal on Rp. Hence by the identity principle
A.8, we have (V).

The result 5.11 obviously extends to any finite number of factors, and therefore
{ξp(D)(ω)}r = ξpr(Dr)(ω), ∀D ∈ Dp. An easy corollary of this equality and (5.8) is
the following generalization of 3.3:

5.12. Corollary. Let p ∈ N+. Then ∀D ∈ Dp & ∀r ∈ N+, ξp(D) ∈ Lr, and

|ξp(D)|rLr := EP{|ξp(D)|r} 6 |ξpr(Dr)|L2 <∞.
Thus the random variable ξp(D) has finite (raw absolute) moments of all orders.

It is quite easily seen that the measures ξp are robust in the sense that their total
variations |ξp| have the binary range {0,∞}; specifically:

∀p ∈ N+, D ∈ Dp & ξp(D) 6= 0 =⇒ |ξp|(D) =∞.
The appropriate variation for the ξp are the quasi- and semi-variations qξp and sξp ,
defined in A.3. Even though the ξp are not CAOS, they share with the CAOS mea-
sures the property that qξp and sξp are equal to the norm of ξp. More precisely, we
have:

5.13. Proposition. (Quasi- and semi-variations) Let p ∈ N+. Then
(a) ∀D ∈ Dp, sξp(D) = |ξp(D)| = qξp(D) ∈ R0+;
(b) ∀A ∈ Bp, sξp(A) = qξp(A) ∈ [0,∞];
(c) ∀D,E ∈ Dp, D ⊆ E =⇒ |ξp(D)| 6 |ξp(E)|.
Proof. (a) Let D ∈ Dp. Then by (A.4),

sξp(D) = sup
|x′|61
x′∈(L2)′

|x′ ◦ ξp|(D),

(L2)′ being the dual of L2. It follows readily that

|ξp(D)| 6 qξp(D) 6 sξp(D).(1)

To show the reverse inequality, let

ΠD := {π : π is a finite class of ‖ sets in Dp ∩ 2D}.
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Let π = {∆1,∆2, . . . ,∆n} ∈ ΠD & α(·) ∈ Rπ be such that ∀i ∈ [1, n], |α(∆i)| 6 1.
Then by the covariance equality (cf. 5.3 and 5.7),∣∣∣∣∑

∆∈π
α(∆)ξp(∆)

∣∣∣∣2 =
n∑
i=1

n∑
j=1

α(∆i)α(∆j)(ξp(∆i), ξp(∆j))

=
[p/2]∑
k=0

n∑
i=1

n∑
j=1

α(∆i)α(∆j) · Γ pp
k (∆i,∆j).(2)

Now it is easy to see that

RHS(2) 6
[p/2]∑
k=0

n∑
i=1

n∑
j=1

Γ pp
k (∆i,∆j).

Also, from the finite additivity of the Γ pp
k (·, ·) in each variable, we get with S :=⋃p

i=1 ∆i,
n∑
i=1

n∑
j=1

Γ pp
k (∆i,∆j) = Γ pp

k (S, S) 6 Γ pp
k (D,D).

We can thus conclude from (2) and 5.7 that∣∣∣∣∑
∆∈π

α(∆)ξp(∆)
∣∣∣∣2 6 [p/2]∑

k=0

Γ pp
k (D,D) = |ξp(D)|2.(3)

On taking the square root and then the suprema over α(·) and over π on the LHS,
we get sξp(D) 6 |ξp(D)|. This, together with (1), yields the equalities in (a).

(b) Let A ∈ Bp. Then since Bp = Dloc
p , cf. §1, it follows from (a), ∀D ∈ Dp,

qξp(D ∩A) = sξp(D ∩A). Taking the supremum over D ∈ Dp, we get (b), cf. A.3(b).
(c) follows at once from (a) and the monotonicity of the quasi-variation.

We turn next to the Lebesgue decomposition of ξp with respect to `p. First, recall
that since Dloc

p = Bp, a set A is ξp-negligible in the sense of definition A.2, in symbols
A ∈ Nξp , iff

A ∈ Bp & ∀D ∈ Dp, ξ(D ∩A) = 0;
and C is a carrier of ξp in the sense of definition A.2, iff

C ∈ Bp & ∀D ∈ Dp, ξp(D) = ξp(D ∩ C).

We say that two vector-valued FA measures ξ, η on the same δ-ring are mutually
singular, in symbols η |= ξp, iff they possess carriers that are ‖. The notion of abso-
lute continuity of a vector-valued measure ξ with respect to a non-negative measure
µ, in symbols ξ ≺≺ µ, is defined in [MN, I, def. 2.36]. From [MN, II, prop. 3.6], we
know that

∀ρ ∈ CA(Dp,L2), ρ ≺≺ `p iff D ∈ Dp & `p(D) = 0 =⇒ ρ(D) = 0.(5.14)

By (A.5), this result can be rendered in the form,

ρ ≺≺ `p iff B ∈ Bp & |`p|(B) = 0 =⇒ sρ(B) = 0.(5.15)

Now define, cf. (4.1):

∀p ∈ N+ & ∀D ∈ Dp, ξap(D) := ξp(D\Ip1 ), ξbp(D) := ξp(D ∩ Ip1 ).(5.16)
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We can then assert the following lemma:

5.17. Lemma. Let p ∈ N+. Then
(a) ξap , ξ

b
p ∈ CA(Dp,L2), EP{ξap(·)} = 0 on Dp;

(b) ∀D,E ∈ Dp,
(ξap(D), ξap(E)) =

∑
φ∈Perm(p)

`p(D ∩ Eφ);

(c) ∀D ∈ Dp, √`p(D) 6 qξap (D) = |ξap(D)| = sξap (D) 6 √p!√`p(D);
(d) ∀A ∈ Bp, √|`p|(A) 6 qξap (A) = sξap (A) 6 √p!√|`p|(A).

Proof. (a) The first statement is obvious from (5.16) and theorem 5.6. Next let
D ∈ Dp. Then by (5.16) and 5.9,

EP{ξap(D)} = EP{ξap(D\Ip1 )} = γpp/2(D\Ip1 , 0) = 0,

since by 4.16(a), γpp/2(·, 0) has carrier Ipp/2 ⊆ Ip1 . Thus (a).
(b) Let D,E ∈ Dp. Then by the covariance equality,

(ξap(D), ξap(E)) = (ξp(D\Ip1 ), ξp(E\Ip1 )) =
[p/2]∑
k=0

Γ pp
k (D\Ip1 , E\Ip1 ).(1)

But since by lemma 5.2(a), Γ pp
k (·, E) has the carrier Ipk , and obviously Ipk ⊆ Ip1 for

k > 1, it follows that the terms Γ pp
k (D\Ip1 , E\Ip1 ) = 0, for 1 6 k 6 [p/2]. Thus from

(1),

(ξap(D), ξap(E)) = Γ pp
0 (D\Ip1 , E\Ipi ) =

∑
φ∈Perm(p)

`p[(D\Ip1 ) ∩ (E\Ip1 )φ],

by 5.1. But since, cf. (4.14), Ipi ∈ N`p , the RHS reduces to the RHS(b).
(c) Let D ∈ Dp. The two equalities follow at once on applying those in proposition

5.13(a) to the set D\Ip1 . It remains to show
√
`p(D) 6 |ξap(D)| 6 √p!√`p(D).(I)

Proof of (I). By (b) we have

|ξap(D)|2 =
∑

φ∈Perm(p)

`p(D ∩Dφ).

Since the RHS obviously exceeds the term with φ = I, we get the first inequality in
(I). Next, since for each φ, `p(D ∩Dφ) 6 `p(D), we get the second inequality in (I).
Thus (I) holds, and (c) is proved.

(d) follows on applying (c) to the sets A ∩ D, and taking the supremum over
D ∈ Dp.
5.18. Theorem. (Lebesgue decomposition) Let p ∈ N+. Then with ξap , ξbp as
in (5.16),

(a) ξp = ξap + ξbp, ξap ≺≺ `p |= ξbp;
(b) ξap and `p are equivalent, i.e. Nξap = N`p .
Proof. (a) The equality is obvious from (5.16). Next from lemma 5.17(c) and

(5.14), we see that ξap ≺≺ `p. Finally, by (4.14), Rp\Ip1 is a carrier of `p and by
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(5.16), Ip1 is a carrier of ξbp. Thus `p |= ξbp. This establishes (a). (b) is clear from
lemma 5.17(c).

The following orthogonality properties of the Lebesgue components of ξp are im-
mediate from the disjointness of their carriers, cf. (5.16), and the definitions 4.13 and
5.1:

5.19. Corollary. (a) The ranges of ξap , ξbp are orthogonal:

∀D,E ∈ Dp, ξap(D) ⊥ ξbp(E);

(b)
∀D ∈ Dp, |ξp(D)|2 = |ξap(D)|2 + |ξbp(D)|2.

It follows from 5.18(a), 5.19(a) that

(ξp(D), ξp(E)) = (ξap(D), ξap(E)) + (ξbp(D), ξbp(E)).

But by 5.17(b), and the equality for Γ pp
0 (D,E) in 5.1, we see that

(ξap(D), ξap(E)) = Γ pp
0 (D,E).(5.20)

It follows from the last two equalities, and the covariance equality in 5.3 with q = p
that

∀D,E ∈ Dp, (ξbp(D), ξbp(E)) =
[p/2]∑
k=1

Γ pp
k (D,E).(5.21)

The semi-variation measure of the Lebesgue components are given in the next
triviality. The proof, which appeals to the classical triviality that if µ0 is defined on
D by µ0(·) = µ(· ∩B), where B ∈ Dloc, then |µ0|(·) = |µ|(· ∩B) on Dloc, is obvious:

5.22. Triviality. (a) ∀x′ ∈ ε(L2)′ & ∀A ∈ Bp,
|x′ ◦ ξap |(A) = |x′ ◦ ξp|(A\Ip1 ), |x′ ◦ ξbp|(A) = |x′ ◦ ξp|(A ∩ Ip1 ),

|x′ ◦ ξp|(A) = |x′ ◦ ξap |(A) + |x′ ◦ ξbp|(A);

(b) ∀A ∈ Bp, sξap (A) = sξp(A\Ip1 ) & sξbp(A) = sξp(A ∩ Ip1 ).

As for a control measure for the measure ξp itself, cf. Traynor (1973), we can show,
as the reader can easily check, that the covariance equality yields an explicit formulae
for |ξp(D)|2, and this suggests a natural control measure µp for ξp. More precisely:

5.23. Corollary. (Control measure for ξp) Let p ∈ N+. Then, with ˜ indicating
symmetrization,

(a) ∀D ∈ Dp,

|ξp(D)|2 = p!
[p/2]∑
k=0

∫
Rp−2k

|γ̃pk(D,h)|2`p−2k (dh).

(b) Defining µp on Dp by

∀D ∈ Dp, µp(D) :=
[p/2]∑
k=0

∫
Rp−2k

γ̃pk(D,h)`p−2k (dh),
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we have µp ∈ CA(Dp,R0+), and ξp is locally Lipchitzian with respect to µp, i.e.
∀A ∈ P1, ∃ a constant βA such that

∀D ∈ Dp ∩ 2A
p

, |ξp(D)|2 6 βA · µp(D).

The measures ξp and µp are equivalent, i.e. Nξp = Nµp .
5.24. Remarks on product measures. Let C, D be δ-rings over sets S, T , respectively,
and let

ρ ∈ CA(C,L2), σ ∈ CA(D,L2).(1)
We define ρ× σ on the pre-ring C × D by

∀C ×D ∈ C × D, (ρ× σ)(C ×D) := ρ(C) · σ(D).(2)

In general, ρ(C) · σ(D) 6∈ L2. However, by the Schwartz inequality,

|(ρ× σ)(C × E)|L2 6 |ρ(C)|L4 · |σ(D)|L4 .

Assume that ρ(C) and σ(D) have finite 4th moments, ∀C ∈ C and ∀D ∈ D. Then it
easily follows that

ρ× σ ∈ FA(C × D,L2).(3)
But, unlike the classical situation, we cannot in general conclude that ρ×σ ∈ CA(C×
D,L2).

In this regard, the special case ρ = ξp, σ = ξq is a notable exception, for by
theorems 5.11 and 5.6,

∀p, q ∈ N+, ξp × ξq = ξp+q ∈ CA(Dp+q,L2).(5.25)

We shall now deduce from (5.25) the countable additivity of the products of the
Lebesgue components of ξp. We assert:

5.26. Proposition. Let p, q ∈ N+. Then

ξap × ξaq , ξap × ξbq, ξbp × ξap , ξbp × ξbq ∈ CA(Dp+q,L2).

Proof. Let R := ring(Dp×Dq). It will suffice to deal with the product ρ := ξap×ξaq .
Trivially, cf. 5.24(3), we have

ρ ∈ FA(R,L2).
Now grant momentarily that

|ρ(·)| 6 |ξp+q(·)| on R.(I)

Then since by 5.14, ξp+q ∈ CA(Dp+q,L2), it satisfies the Kolmogorov condition on
R, i.e. Rn ∈ R and Rn ↓ ∅ =⇒ ξp+q(Rn) → 0. It follows from (I) that so does ρ(·).
Hence ρ(·) is CA on R. Next, ξp+q being CA is locally strongly bounded on Dp+q
and therefore on R, cf. 5.5 It follows from (I) that so is ρ(·). Hence by the Brooks–
Dinculeanu theorem (1974), ρ has a CA extension to δ-ring(R), i.e. cf. (5.10) to
Dp+q. Thus it only remains to prove (I).

Proof of (I). Let R ∈ R. Then

R =
r⋃

k=1

(Dk × Ek), (Dk × Ek) ∈ Dp ×Dq and are ‖.
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Appealing to the definitions (5.16) of ξap , ξbp and the equality (5.25), we get

ρ(R) = ξp+q

[ r⋃
k=1

{(Dk\Ip1 )× (Ek\Iq1 )}
]
.

Hence by the monotonicity stated in 5.13(c),

|ρ(R)| 6
∣∣∣∣ξp+q[ r⋃

k=1

(Dk × Ek)
]∣∣∣∣ = |ξp+q(R)|.(1)

This establishes (I) and finishes the proof for the product ξap×ξaq . The other products
can be treated in exactly the same way, by establishing the inequality (1) for them.

The question whether in analogy with (5.25), ξap×ξaq = ξap+q, has a negative answer,
but this is best demonstrated later, cf. theorem 11.13 below.

6. The permutation group and symmetric sets and functions

Our objective in this section is to find out the simplifications that accrue in the pre-
ceding theory when the sets involved are symmetric, i.e. belong to Dsym

p , cf. 1.9. This
involves an investigation of the action of the appropriate permutation groups on the
canonical coefficients λpπ(D,h) and γpk(D,h), i.e. an investigation of how λpπ(Dφ, h),
γpk(Dφ, h), and λpπ(D,hψ), γpk(D,hψ) might be related. (Recall that Dφ is defined in
1.37.)

It is convenient to first dispose of the much simpler action of the permutation
group on the measures ξp, ξap , ξbp. For completeness we also include `p. We obviously
have:

6.1. Triviality. ∀φ ∈ Perm(p), φ is `p and ξp measure preserving, i.e. ∀φ ∈ Perm(p),
(a) ∀D ∈ Dp, `p(Dφ) = `p(D) & ξp(Dφ) = ξp(D);
(b) ∀x′ ∈ (L2)′ & ∀A ∈ Bp, |x′ ◦ ξp|(Aφ) = |x′ ◦ ξp|(A).

Since the diagonal skeleton Ip1 is symmetric, the corresponding results for ξap , ξbp
easily follow from 6.1, by virtue of the obvious result:

6.2. Triviality. Let (i) X be a Banach space and p ∈ N+,
(ii) ρ ∈ CA(Dp,X ) be permutation-invariant, i.e.

∀φ ∈ Perm(p) & ∀D ∈ Dp, ρ(Dφ) = ρ(D),

(iii) ρ0(·) := ρ(· ∩ S), where S ∈ Bsym
p .

Then ρ0 is permutation-invariant.

We thus obtain
∀φ ∈ Perm(p) & ∀D ∈ Dp, ξap(Dφ) = ξap(D), ξbp(D

φ) = ξbp(D),
∀φ ∈ Perm(p), ∀x′ ∈ (L2)′ & ∀A ∈ Bp,

|x′ ◦ ξap |(Aφ) = |x′ ◦ ξap |(A), |x′ ◦ ξbp|(Aφ) = |x′ ◦ ξbp|(A).

(6.3)

We first address the following basic question. Let p ∈ N+, A ⊆ Rp, k ∈ [0, [p/2]],
and π ∈ Π p

k . Given any φ ∈ Perm(p), is there a π̄ ∈ Π p
k and a φ̄ ∈ Perm(p − 2k),

such that
∀h ∈ Rp−2k, (Aφ)pπ(h) = Apπ̄(hφ̄)?
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We proceed to show that the answer is affirmative, when π̄ and φ̄ are taken as in the
following definition:

6.4. Definition. Let (i) p ∈ N+, φ ∈ Perm(p) and k ∈ [0, [p/2]],
(ii) π ∈ {{i1, j1}, . . . , {ik, jk}} ∈ Π p

k , i1 < · · · < ik,

M ′π := [1, p]\Mπ = {m1, . . . ,mp−2k}, m1 < · · · < mp−2k,

(iii) ∀α ∈ [1, k], ı̄α := φ(iα) ∧ φ(ja), ̄α := φ(iα) ∨ φ(ja),
(iv) φ̄ ∈ Perm(p − 2k) be such that it yields the increasing rearrangement of

φ(m1), . . . , φ(mp−2k), i.e. φ̄ be such that

φ(mφ̄(1)) < φ(mφ̄(2)) < · · · < φ(mφ̄(p−2k)).

We shall call π̄ := {{ı̄1, ̄1}, . . . , {ı̄k, ̄k}} ∈ Π p
k , rearranged as per 1.16(b), the

φ-distortion of π, and call φ̄ the (φ, π)-permutation of [1, p− 2k].

Note. For k = 0, π̄ = ∅ = π, and φ̄ = φ−1 ∈ Perm(p), as the reader can easily
check.

Example. Let p = 9, k = 3, φ ∈ Perm(9) be given by

φ :=
(

1, 2, 3, 4, 5, 6, 7, 8, 9
9, 2, 8, 1, 6, 4, 3, 7, 5

)
, π := {{2, 4}, {3, 5}, {5, 7}} ∈ Π 7

3 .

Then as the reader can easily check

{{ı̄1, ̄1}, {ı̄2, ̄2}, {ı̄3, ̄3}} = {{1, 2}, {4, 8}, {3, 6}}.
Rearranging, we get

π̄ = {{1, 2}, {3, 6}, {4, 8}} ∈ Π 7
3 .

Also since M ′π = {m1,m2,m3} = {1, 8, 9}, therefore φ(m1) = 9, φ(m2) = 7, φ(m3) =
5. Hence φ̄ ∈ Perm(3), is given by (

1, 2, 3
3, 2, 1

)
.

6.5. Basic proposition. Let p ∈ N+ and k ∈ [0, [p/2]]. Then ∀A ⊆ Rp, ∀φ ∈
Perm(p), ∀π ∈ Π p

k and ∀h ∈ Rp−2k,

(Aφ)pπ(h) = Apπ̄(hφ̄),

where π̄ is the φ-distortion of π and φ̄ is the (φ, π)-permutation of [1, p− 2k].

Proof. Case 1. Let k > 1. Let π ∈ Π p
k and M ′π be given by 6.4(ii), A ⊆ Rp and

φ ∈ Perm(p).
Given τ ∈ Rk and h ∈ Rp−2k, define t ∈ Rp by

tiα = τi = tjα & ∀tmβ = hβ, ∀α ∈ [1, k] & ∀β ∈ [1, p− 2k].(1)

Then by definitions 4.10 and (4.8),

τ ∈ (Aφ)pπ(h) ⇐⇒ t ∈ Aφ ⇐⇒ s := tφ
−1

= (tφ−1(1), . . . , tφ−1(p)) ∈ A.(2)

From (1) we see that

∀α ∈ [1, k], sφ(iα) = tφ−1{φ(iα)} = tiα = τα = tjα = tφ−1{φ(jα)} = sφ(jα).(3)
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But for the cells {ı̄α, ̄α} of π̄, the φ-distortion of π, we know that ı̄α, ̄α, are the
smaller and greater of φ(iα), φ(jα). Hence from (3) we infer that

∀α ∈ [1, k], sı̄α = τα = s̄α .(4)

Next, since each ı̄α, ̄α is one of φ(iσ), φ(jα) therefore

Mπ̄ = {φ(iα), φ(jα), . . . , φ(ik), φ(jk)}.
Hence

M ′π̄ := [1, p]\Mπ̄ = {φ(m1), . . . , φ(mp−2k)}
= {m̄1, m̄2, . . . , m̄p−2k} where m̄1 < · · · < m̄p−2k,

say. Then for the distortion φ̄ we know that for β ∈ [1, p−2k], m̄β = φ(mφ̄(β)). Hence
mφ̄(β) = φ−1(m̄β), and therefore

∀β ∈ [1, p− 2k], sm̄β = tφ−1(m̄β) = tmφ̄(β)
= hφ̄(β), by (1).(5)

We see from (4), (5) and (4.8) that

τ ∈ Apπ̄(hφ̄) ⇐⇒ s ∈ A ⇐⇒ τ ∈ (Aφ)pπ(h), by (2).

The two sets are thus equal.
Case 2. Let k = 0. Then since π̄ = ∅ = π and φ̄ = φ−1, the equality easily follows

from the expression for (Ap∅)(h) given in the note to 4.6.

We next address the following question. Let p ∈ N+, k ∈ [1, [p/2]], and π ∈ Π p
k .

Given any ψ ∈ Perm(p − 2k), is there a φ ∈ Perm(p) such that ∀D ∈ Dp and
∀h ∈ Rp−2k,

λpπ(D,hψ) = λpπ(Dφ, h)?
The affirmative answer (cf. 6.9) depends on the following definition and lemma:

6.6. Definition. (π-extension from Perm(p− 2k) to Perm(p)) Let
(i) p ∈ N+, k ∈ [1, [p/2]], M ⊆ [1, p], #M = 2k, and ψ ∈ Perm(p− 2k),
(ii) M ′ := [1, p]\M = {m1, . . . ,mp−2k} ⊆ [1, p], m1 < · · · < mp−2k.

Then (a) the M -extension ψ̄M (briefly ψ̄) in Perm(p) of ψ is given by

∀i ∈M, ψ̄(i) := i & ∀α ∈ [1, p− 2k], φ(mα) := mψ−1(α);

(b) ∀π ∈ Π p
k , the π-extension ψ̄π of ψ is by definition ψ̄Mπ

.

Example. Let p = 12, k = 4, M = {1, 2, 4, 5, 8, 9, 10, 11} ⊆ [1, 12], ψ ∈ Perm(4) be
given by

ψ(1) = 2, ψ(2) = 4, ψ(3) = 3, ψ(4) = 1.
Then the M -extension ψ̄ ∈ Perm(12) of ψ is given on M , by

ψ̄(i) = i, ∀i ∈M.

As for ψ̄ on M ′ = {3, 6, 7, 12} = {m1,m2,m3,m4} say, we have

∀α ∈ [1, 4], ψ̄(mα) = mψ−1(α).

Since ψ−1(1) = 4, ψ−1(2) = 1, ψ−1(3) = 3, ψ−1(4) = 2, we see that

ψ̄(3) = ψ̄(m1) := mψ−1(1) = m4 = 12.
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Similarly, ψ̄(6) = 3, ψ̄(7) = 7, ψ̄(12) = 6. Thus ψ̄ leaves each point of M fixed, but
on M ′, ψ̄ carries 3, 6, 7, 12 to 12, 3, 7, 6, respectively.

Since ψ−1 has the same parity as ψ, and the identity permutation I on M has
even parity, it follows easily that ∀M ⊆ [1, p] & #M = 2k & ∀ψ ∈ Perm(p− 2k),

ψ and ψ̄M have the same parity.(6.7)

6.8. Lemma. Let (i) p ∈ N+, k ∈ [1, [p/2]], (ii) π ∈ Π p
k , (iii) ψ ∈ Perm(p− 2k) and

(iv) φ be the π-extension of ψ. Then

∀A ⊆ Rp & ∀h ∈ Rp−2k, (Aφ)pπ(h) = Apπ(hψ).

Proof. Let A ⊆ Rp and h ∈ Rp−2k. For φ as in (iv), let π̄ be the φ-distortion
of π and φ̄ ∈ Perm(p − 2k) be the (φ, π)-permutation of [1, p − 2k], cf. 6.4. Grant
momentarily that

π̄ = π & φ̄ = ψ.(I)
Then by proposition 6.5 and (I),

(Aφ)pπ(h) = Apπ̄(hφ̄) = Apπ(hψ),

as desired. Hence it only remains to show (I).
Proof of (I). Let π = {{i1, j1}, . . . , {ik, jk}}. Since by (iv) and 6.6, φ := ψ̄Mπ̄

= I
on Mπ, therefore ∀α ∈ [1, k],

ı̄α = φ(iα) ∧ φ(̄α) = iα & ̄α = φ(iα) ∨ φ(̄α) = jα,

i.e. {ı̄α, ̄α} = {iα, jα}. Thus π̄ = π.
Next let M ′π = {m1, . . . ,mp−2k}, m1 < · · · < mp−2k. Then by 6.6(a), ∀β ∈ [1, p−

2k],
φ{mψ(β)} = mψ−1[ψ(β)] = mβ.

The chain m1 < · · · < mp−2k thus entails:

φ{mψ(1)} < · · · < φ{mψ(p−2k)}.
This shows, cf. 6.4(iv), that φ̄ = ψ. Thus (I).

Using definitions 4.10, 4.13, and lemma 6.8, we easily get the answer to the question
raised at the outset:

6.9. Proposition. Let p, k, ψ, π be as in 6.8, and ψ̄π be the π-extension of ψ.
Then ∀D ∈ Dp & ∀h ∈ Rp−2k,

(a) λpπ(D,hψ) = λpπ(Dψ̄π , h);

(b) γpk(D,hψ) :=
∑
π∈Πp

k

λpπ(D,hψ) =
∑
π∈Πp

k

λpπ(Dψ̄π , h).

For symmetric D, we immediately get from 6.9(a) and 6.9(b) the following corol-
lary:

6.10. Corollary. Let p ∈ N+, k ∈ [1, [p/2]], and π ∈ Π p
k . Then

(a) ∀D ∈ Dsym
p , λpπ(D, ·) is symmetric on Rp−2k;

(b) ∀D ∈ Dsym
p , γpk(D, ·) is symmetric on Rp−2k.
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The most convenient among the partitions in Π p
k , is the one for which Mπ = [1, 2k],

and the cells occur in natural order:

∀k ∈ N+, πk := {{1, 2}, {3, 4}, . . . , {2k − 1, 2k}}.(6.11)

We shall refer to πk as the k-standard partition.
A permutation φ ∈ Perm(p) that is especially useful is the one for which the φ-

distortion of π ∈ Π p
k is the k-standard partition πk, and which also preserves the

ordering on the set M ′π. This is defined as follows:

6.12. Definition. Let (i) p ∈ N+ and k ∈ [1, [p/2]],
(ii) π = {{i1, j1}, . . . , {ik, jk}} ∈ Π p

k , i1 < · · · < ip.
Then φπ on [1, p] is defined by

∀α ∈ [1, k], φπ(iα) = 2α− 1, φπ(jα) = 2α

& φπ is increasing on M ′π onto [2k + 1, p].

Note. φπ(∗π) = ∗πk, φπ(π∗) = π∗k & φπ is increasing on ∗π.

It is necessary to record the deformations, cf. 6.4, caused by the permutation φπ
just defined; we leave its easy proof to the reader:

6.13. Lemma. Let (i) p ∈ N+, k ∈ [0, [p/2]] and π ∈ Π p
k .

(ii) π̄ be the φπ-deformation of π and φ̄ be the (φ, π) permutation of [1, p − 2k].
Then (a) π̄ = πk & ∀β ∈ [1, p− 2k], φ̄(β) = β;

(b) I(π, p)φ
−1
π = I(πk, p).

This lemma allows us to conclude immediately from the basic proposition 6.5:

6.14. Corollary. Let p ∈ N+, k ∈ [0, [p/2]], π ∈ Π p
k , and φπ be as in 6.12. Then

∀A ⊆ Rp & ∀h ∈ Rp−2k, (Aφπ)pπ(h) = Apπk(h).

Combining 6.14, 6.9(a) and definitions 4.10, 4.13, we get the following useful ana-
logue of proposition 6.9 for the k-standard partition:

6.15. Proposition. Let (i) p ∈ N+, k ∈ [1, [p/2]], and π ∈ Π p
k , (ii) φπ be as in 6.12,

(iii) ψ ∈ Perm(p − 2k) & ψ̄ := ψ̄πk be the πk-extension of ψ, cf. definition 6.6(b).
Then ∀D ∈ Dp and ∀h ∈ Rp−2k,

λpπ(D,h) = λpπk(Dφ−1
π , h) & λpπ(D,hψ) = λpπk(Dψ̄φ−1

π , h).

The corresponding results for the coefficients γpk are, cf. 6.9(b):

p ∈ N+, ∀k ∈ [1, [p/2]], ∀D ∈ Dp, ∀h ∈ Rp−2k,

∀ψ ∈ Perm(p− 2k) & ∀ψ̄ := ψ̄[1,2k],

γpk(D,h) :=
∑
π∈Πp

k

λpπk(Dφ−1
π , h),

γpk(D,hψ) :=
∑
π∈Πp

k

λpπk(Dψ̄φ−1
π , h).

(6.16)

For symmetric D, once again 6.15 and (6.16), together with 6.10, readily yield the
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result that λpπ(D,hψ) is the same for all π and for all ψ, and that γpk(D,hψ) is a
constant multiple of λpπk(D,h):

6.17. Corollary. Let p ∈ N+, k ∈ [1, [p/2]] & π ∈ Π p
k . Then ∀D ∈ Dsym

p & ∀h ∈
Rp−2k, and ∀ψ ∈ Perm(p− 2k),

λpπ(D,hψ) = λpπk(D,h), γpk(D,hψ) =
(
p

2k

)
α2kλ

p
πk

(D,h).

The second equality in 6.17 brings about some simplification in the formulae for
the covariance kernels Γ pq

k (D,E), cf. 5.1, when D or E or both are symmetric, and
this in turn simplifies the formula for the covariance (ξp(D), ξq(D)). We have:

6.18. Corollary. Let (i) p, q ∈ N+, be such that p+ q = 2r is even and q 6 p, (ii)
k ∈ [0, [q/2]]. Then

(a) ∀D ∈ Dp & ∀E ∈ Dsym
q ,

Γ pq
k (D,E) = (q − 2k)!

(
q

2k

)
α2k

∫
Rq−2k

γp1
2 (p−q)+k(D,h)γpπk(E, h)`q−2k (dh);

(b) ∀D ∈ Dsym
p & ∀E ∈ Dq,

Γ pq
k (D,E) =

∑
φ∈Perm(q−2k)

(
p

q − 2k

)
αp−q+2k

×
∫
Rq−2k

λpπ 1
2 (p−q)+k

(D,h)γqk(E, hφ)`q−2k (dh);

(c) ∀D ∈ Dsym
p & ∀E ∈ Dsym

q ,

Γ pq
k (D,E) = (q − 2k)!

(
p

q − 2k

)(
q

2k

)
αp−q+2kα2k

×
∫
Rp−2k

λpπ 1
2 (p−q)+k

(D,h)γqπk(E, hφ)`q−2k (dh).

Proof. Let D,E ∈ Dp. Then by 5.1

Γ pq
k (D,E) :=

∑
φ∈Perm(q−2k)

∫
Rq−2k

γp1
2 (p−q)+k(D,h)γpk(E, hφ)`q−2k (dh).

The results follow when one or both factors in the integrand are simplified in the
light of the second equality in corollary 6.17.

Another important topic is that of the action on L2(Rp) of the symmetrization
operator f 7→ f̃ , cf. definition 1.39(b) and (1.46). The following useful result is a
simple consequence of the permutation invariance of the measure `p, cf. (6.1):

6.19. Lemma. (Symmetrization on L2(Rp)) ∀f, g ∈ L2(Rp),

(f̃ , g) = (f, g̃) = (f̃ , g̃).

Thus on letting ∀f ∈ L2(Rp), S(f) := f̃ , we see that S is an orthogonal projection on
L2(Rp) onto Lsym

2 (Rp), the null space of which includes all antisymmetric functions
on Rp.
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It follows from 6.19 that |f̃ |2,`p 6 |f |2,`p , for all f ∈ L2(Rp). Since for measurable
f 6∈ L2(Rp), |f |2,`p =∞, we see at once that

∀f ∈M(Bp,B1), |f̃ |2,`p 6 |f |2,`p 6∞.(6.20)

There is, however, a more delicate reverse inequality to (6.20) that rests on the
`p-negligibility of the diagonal skeleton Ip1 , cf. (4.14). This requires first of all the
following simple results on the half-spaces Spφ, φ ∈ Perm(p) into which Rp\Ip1 is
dissected, cf. 4.2(b), the easy proof of which we omit:

∀p ∈ N+ & ∀φ, ψ, ψ′ ∈ Perm(p),
ψ−1(Spφ) = (Spφ)ψ

−1
= Spψφ & (χSp

φ
)ψ = χSp

ψφ
,

cf. definitions 1.37 and 1.42;
ψ 6= ψ′ =⇒ (χSp

φ
)ψ · (χSp

φ
)ψ
′

= 0 on Rp.

(6.21)

The cherished reverse inequality links the L2-norm of f with the L2-norms of the
symmetrizations of the restrictions of f :

6.22. Lemma. (Symmetrization inequality) Let (i) p ∈ N+, (ii) f ∈M(Bp,B1).
Then

(1/p!)|f |2,`p 6 sup
A∈Bp

|(fχA)˜|2,`p ∈ [0,∞].

Proof. Let Spφ, briefly Sφ, for φ ∈ Perm(p), be the diagonal half-spaces of Rp, cf.
4.2(b). Grant momentarily that

∀φ ∈ Perm(p),
1
p!

∫
Sφ

|f(t)|2`p (dt) = |(fχSφ)˜|22,`p ∈ [0,∞].(I)

Then since by (4.14), Ip1 ∈ N`p and, cf. 4.2(b), Rp\Ip1 =
⋃
φ∈Perm(p) Sφ & Sφ are ‖,

|f |22,`p =
∫
Rp\Ip1

|f(t)|2`p (dt) =
∑

φ∈Perm(p)

∫
Sφ

|f(t)|2`p (dt)

= p!
∑

φ∈Perm(p)

|(fχSφ)˜|22,`p , by (I)

6 p!
∑

φ∈Perm(p)

sup
A∈Bp

|(fχA)˜|22,`p = (p!)2 sup
A∈Bp

|(fχA)˜|22,`p .

Square-rooting and dividing by p!, we get the desired result. Here it only remains to
prove (I).

Proof of (I). Since neither f nor χSφ are in L2(Rp), we are barred from using the
nice inner product notation. Instead we have to proceed by noting that for t ∈ Rp,

p!(fχSφ)˜(t) :=
∑

ψ∈Perm(p)

(fχSφ)(tψ)

=
∑

ψ∈Perm(p)

f(tψ)χSφ(tψ).
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Let {ψ1, . . . , ψp!} be a denumeration of Perm(p). Then

(p!)2[(fχSφ)˜(t)]2 =
[ p!∑
i=1

f(tψi)χSφ(tψi)
]2

=
p!∑
i=1

f(tψi)2χSφ(tψi)2 +
∑
i6=j

f(tψi)χSφ(tψi)f(tψj )χSφ(tψj )

=
p!∑
i=1

{f(tψi)χSφ(tψi)}2 + 0,

since χSφ(tψi)χSφ(tψj ) = 0, by (6.21).

Hence integrating over Rp,

(p!)2|(fχSφ)˜|22,`p :=
p!∑
i=1

∫
Rp
{(f · χSφ)(tψi)}2`p (dt)

=
p!∑
i=1

∫
Rp
{(f · χSφ)(t)}2`p (dt), since `p is ψi invariant,

=
p!∑
i=1

|fχSφ |22,`p = p! |fχSφ |22,`p .

Dividing by (p!)2, we get (I).

7. The Lebesgue negligibility of the diagonal skeletons and of the
canonical coefficients

To advance further in the study of the measure ξp we have to study all the diagonal
skeletons Ipk , for k ∈ [1, [p/2]], cf. (4.5). Even though Ipk 6∈ Dp, we have ∀D ∈ Dp,
D ∩ Ipk ∈ Dp, and the coefficients γpk(D ∩ Ipj , ·) are well-defined functions on Rp−2k.
Our objective in this section is to show that

(∗) ∀ even p ∈ N+ & ∀k ∈ [0, p/2− 1], supp γpk(D ∩ Ipp/2, ·) ∈ N`p−2k ,

i.e. that all except the last of the coefficients γpk(D ∩ Ipp/2, ·) vanish a.e. (`p−2k) on
Rp−2k, cf. (7.6). The last (i.e. k = p/2) coefficient is always EP{ξp(D)}, i.e. is
constant-valued, cf. 5.9. The consequences of the result (∗) are crucial to the re-
maining sections.

We begin by recording some obvious properties of the skeletons defined in (4.5):

7.1. Triviality. Let p ∈ N+ & ∀k ∈ [0, [p/2]]. Then
(a) for 0 6 k 6 k̄ 6 [p/2], Ip[p/2] ⊆ Ipk̄ ⊆ Ipk ⊆ Ip1 ⊆ Ip0 = Rp;
(b)

Ip[p/2] =


⋃

π∈Π[1,p]

I(π, p), for even p;

p⋃
i=1

⋃
π∈Π[1,p]\[i]

I(π, p), for odd p;
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(c) Ipk is symmetric;
(d) ∀k ∈ [1, [p/2]], Ipk ∈ N`p ;
(e) ∀p ∈ N+, Ipk × Rq ⊆ Ip+qk .

The proof, which is quite routine, is omitted. More difficult and important is
the next lemma, to state which it is convenient to have a notation for the affine
displacements of the coordinate hyperplanes of Rp, stemming from a vector h in
Rp−2k:

7.2. Notation. Let p ∈ N+ & k ∈ [1, [p/2]]. Then ∀h ∈ Rp−2k, ∀α ∈ [1, k] & ∀β ∈
[1, p− 2k],

[h]p,kα,β := {τ : τ = (τ1, . . . , τk) ∈ Rk & τα = hβ} ⊆ Rk,
i.e. [h]p,kα,β is the affine hyperplane of Rk, parallel to the coordinate hyperplane {τ :
τ ∈ Rk & τα = 0}, obtained by translating the latter along its normal a distance hβ.
Obviously dim[h]p,kα,β = k − 1. For k = 0, we define [h]p,0α,β := ∅.

For each α there will be p− 2k such parallel hyperplanes. The total number as α
ranges over [1, k] is k(p− 2k).8

Example. For p = 7 and k = 3, we have h ∈ R1, and so k(p− 2k) = 3. It is easily
checked that the three affine hyperplanes [h]7,3α,1 of R3 for α = 1, 2, 3, are the planes
{x = h}, {y = h}, {z = h} in R3.

7.3. Main lemma. Let (i) p ∈ N+ & k ∈ [0, [p/2]],
(ii) π ∈ Π p

k & ∆̄ := {ı̄, ̄} ⊆ [1, p] & ∆̄ 6∈ π.
Then (a) ∀h ∈ Rp−2k

∗ := Rp−2k\Ip−2k
1 ,

(Ip∆̄)pπ ⊆ Ik1 ∪
k⋃

α=1

p−2k⋃
β=1

[h]pα,β ∈ N`k ;

(b) ∀h ∈ Rp−2k
∗ & ∀D ∈ Dp, λpπ(D ∪ Ip∆̄, h) = 0.

Proof. (a) Let first k ∈ [1, [p/2]],

π = {{i1, j1}, . . . , {ik, jk}} ∈ Π p
k & h = (h1, . . . , hp−2k) ∈ Rp−2k

∗ .(1)

We first show the inclusion in the result, to wit

A := (Ip∆̄)pπ(h) := ℘π∗{(Ip∆̄) ∩ Ipπ(h)} ⊆ Ik1 ∪
k⋃

α=1

p−2k⋃
β=1

[h]pα,β.(I)

Proof of (I). Let τ = (τ1, . . . , τk) ∈ A. Then

τ = ℘π∗(t) where t ∈ Ip∆̄ ∩ Ipπ(h).(2)

Since t ∈ Ipπ(h), therefore, cf. (ii),

∀α ∈ [1, k], τα = tiα = tjα & ∀β ∈ [1, p− 2k], tmβ = hβ.(3)

But since by (2), t ∈ Ip∆̄, therefore, cf. (ii),

tı̄ = t̄.(4)

8 For p even and k = p/2, this number is zero, and the symbol [h]p,k
α,β

is meaningless.
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Now let

M ′π = [1, p]\Mπ := {mβ1 , . . . ,mβp−2k}, mβ1 < · · · < mβp−2k .(5)

Then we have four possible cases depending on whether both or none or just one of
ı̄, ̄ are in M ′π.

Case 1. Let ı̄ & ̄ ∈M ′π. Then by (5), ∃β1, β2 ∈ [1, p−2k] such that ı̄ = mβ1 & ̄ =
mβ2 . Hence by (3) and (4),

hβ1 = tmβ1
= tı̄ = t̄ = tmβ2

= hβ2 ,

and so h = (h1, . . . , hβ1 , . . . , hβ2 , . . . , hp−2k) ∈ Ip−2k
1 . But by (1), h 6∈ Ip−2k

1 . Hence
∆̄ ∩ Ipπ(h) = ∅ and so A = ∅.

Case 2. Let ı̄ & ̄ ∈ Mπ. Then ∃α1, α2 ∈ [1, k] such that ı̄ ∈ {iα1 , jα1} & ̄ ∈
{iα2 , jα2}. Therefore by (3) and (4),

τα1 = tiα1
= tjα1

= tı̄ = t̄ = tiα2
= tjα2

= τα2 .

Here α1 6= α2, for were α1 = α2, then ∆̄ = {ı̄, ̄} = {iα1 , jα1} ∈ π, in contradiction
to (ii). Thus τ = (τ 1, . . . , τα1 , . . . , τα2 , . . . , τk) ∈ Ik1 .

Case 3. Let ı̄ ∈ Mπ & ̄ ∈ M ′π. Then again ∃α ∈ [1, k] such that ı̄ ∈ {iα, jα} and
∃β ∈ [1, p− 2k] such that ̄ = mβ. If ı̄ = iα, then by (3), (4) and (5),

τα = tiα = tı̄ = t̄ = tmβ = hβ.

If ı̄ = jα, then again by (3), (4) and (5),

τα = tjα = tı̄ = t̄ = tmβ = hβ.

Thus τ = (τ 1, . . . , τα, . . . , τk) and τα = hβ; i.e. τ ∈ [h]p,kα,β.

Case 4. Let ı̄ ∈M ′π & ̄ ∈Mπ. Then again ∃β ∈ [1, p−2k] such that ı̄ = mβ ∈M ′π
and ∃α ∈ [1, k] such that ̄ ∈ {iα, jα}. Hence, by the arguments used in Case 3,

τα = tiα = tjα = tı̄ = t̄ = tmβ = hβ.

Thus τ = (τ 1 · · · τα · · · τk) ∈ [h]p,kα,β.
Combining the four cases we see that

τ ∈ Ik1 ∪
k⋃

α=1

p−2k⋃
β=1

[h]p,kα,β.

As this holds ∀τ ∈ A, we have (I).
Since by 7.1(d), Ik1 ∈ N`k , and each [h]p,kα,β, being of dimension k − 1, is also `k-

negligible, hence so is the union on the RHS of (I). This establishes the result (a) for
k ∈ [1, p].

Finally we consider the case p ∈ N+ and k = 0. Then for π ∈ Π p
0 , π = ∅.

Consequently, by the note to 4.10,

∀h ∈ Rp, (Ip∆̄)p∅(h) =

{
{0}, h ∈ Ip∆̄;
∅, h ∈ Rp\Ip∆̄.

But Ip∆̄ ⊆ Ip1 . Hence for h ∈ Rp∗, the first alternative is ruled out, and we get

∀h ∈ Rp∗, (Ip∆̄)p∅(h) = ∅.
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Thus the inclusion in the conclusion holds trivially, and it only remains to show
that the RHS of the inclusion is in N`0 , i.e. show that the RHS is ∅. But this is clear
since by 4.1, I0

1 = ∅, and cf. 7.2, [h]p,kα,β = ∅ for k = 0.
This completes the proof of (a).
(b) Let D ∈ Dp. Then by (a)

℘π∗ [D ∩ Ip∆̄ ∩ Ipπ(h)] ⊆ ℘π∗ [Ip∆̄ ∩ Ipπ(h)] ∈ N`k .
Since D∩ Ip∆̄ ∈ Dp, it follows on taking the `k measure that λpπ(D∩ Ip∆̄, h) = 0. Thus
(b).

To subsume in one formula the several cases occurring in the next theorem, and
in the sequel, we shall adopt the following convention:

7.4. Convention. Let k ∈ N+ & A ∈ Bk. Then
(a) 0 .A shall mean a set in N`k ;
(b) 1 .A shall mean a set that is `k essentially equal to A, i.e. such that the

symmetric difference 1·A+A ∈ N`k .

7.5. Theorem. Let (i) p ∈ N+ & k, k̄ ∈ [0, [p/2]], (ii) π ∈ Π p
k and π̄ ∈ Π p

k̄
. Then

with the convention 7.4, we have
(a) ∀h ∈ Rp−2k

∗ , {I(π̄, p)}pπ(h) = χ[0,k](k̄)χ2π(π̄) · Rk;
(b) for π, π̄ ∈ Π p

k & ∀h ∈ Rp−2k
∗ , {I(π̄, p)}pπ(h) = δπ̄,π · Rk.

Proof. (a) Case 1. Let k ∈ [1, [p/2]]. There are now three subcases:

k̄ ∈ [0, k] & π̄ ∈ 2π; k̄ ∈ [0, k] & π̄ 6∈ 2π; k̄ 6∈ [0, k].

Let h ∈ Rp−2k
∗ . We have to show that the equality in (a) holds in each subcase, i.e.

we must show that

k̄ ∈ [0, k] & π̄ ∈ 2π =⇒ {I(π̄, p)}pπ(h) = 1 · Rk,(I)

k̄ ∈ [0, k] & π̄ 6∈ 2π =⇒ {I(π̄, p)}pπ(h) = 0 · Rk,(II)

k̄ 6∈ [0, k] =⇒ {I(π̄, p)}pπ(h) = 0 · Rk.(III)

We first note that since, cf. (4.7),

I(π, p) ∩ Ipπ(h) = Ipπ(h) = Rp ∩ Ipπ(h),

therefore applying the operator ℘π∗ , we get

{I(π, p)}pπ(h) = (Rp)pπ = Rk, by 4.11.(1)

Proof of (I). Let k̄ 6 k & π̄ ∈ 2π, i.e. π̄ ⊆ π. Then, cf. (4.7),

I(π, p) :=
⋂

∆∈π
Ip∆ ⊆

⋂
∆∈π̄

Ip∆ =: I(π̄, p).

Hence by (1) and the monotonicity of the homomorphism in 4.11,

Rk = {I(π, p)}pπ(h) ⊆ {I(π̄, p)}pπ(h) ⊆ Rk,
i.e. we have the equality in (I).

Proof of (II). Let k̄ 6 k & π̄ 6∈ 2π, i.e. π̄ 6⊆ π. Then ∃∆̄ ∈ π̄\π. Hence by 4.3,
I(π̄, p) :=

⋂
∆∈π̄ I

p
∆ ⊆ Ip∆̄, and ∆̄ 6∈ π. Hence by the monotonicity

{I(π̄, p)}pπ(h) ⊆ (Ip∆̄)pπ(h) ∈ N`k , by 7.3(a),

i.e. we have the equality in (II).
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Proof of (III). Let k̄ 6∈ [0, k]. Then k̄ < k 6 [p/2]. Also π̄ has more cells than π, i.e.
∃∆̄ ∈ π̄\π. Hence exactly as in Case II, we can conclude that the equality in (III)
holds.

This finishes the proof of (a) in Case 1.
Case 2. Let k = 0. then p − 2k = p and by (ii), π = ∅. Hence there are just two

subcases:

k̄ = 0 & π̄ = π = ∅; k̄ 6∈ [0, k], i.e. k̄ ∈ [1, [p/2]].

Let h ∈ Rp∗. We have to show that the equality in (a) holds in each of these two
subcases, i.e. show that

(I′) k̄ = 0 & π̄ = π = ∅ =⇒ {I(π̄, p)}pπ(h) = 1 · R0;

(II′) k̄ ∈ [1, [p/2]] =⇒ {I(π̄, p)}pπ(h) = 0 · R0.

We first recall, cf. the note to 4.10, that for all π̄ = Π p

k̄
,

{I(π̄, p)}pπ(h) = {I(π̄, p)}p∅(h) =

{
{0} = R0, if h ∈ I(π̄, p);
∅ ∈ N`p if h ∈ Rp\I(π̄, p).

(2)

Proof of (I′). Let k̄ = 0 & π̄ = π = ∅. Then I(π̄, p) = I(∅, p) = Rp, by 4.3. Thus
the second alternative in (2) is impossible. The first alternative prevails, i.e. we have
the equality in (I′).

Proof of (II′). Let k̄ ∈ [1, [p/2]]. Then by 4.3, I(π̄, p) ⊆ Ip1 . Now h ∈ Rp∗ = Rp\Ip1 ⊆
Rp\I(π̄, p), i.e. the second alternative in (2) prevails. Thus {I(π̄, p)}pπ(h) ∈ N`0 , i.e.
we have by convention 7.4, the equality in (II′).

This finishes the proof of (a).
(b) When k̄ = k, we have χ[0,k](k̄)χ2π(π̄) = δπ̄,π and (b) follows from (a).

The last theorem yields the following useful corollary on how the intersection of the
set D ∈ Dp with different diagonal skeletons Ipj shrinks the support of the canonical
coefficients γpk(A, ·) on Rp−2k:

7.6. Corollary. Let p ∈ N+ and k ∈ [0, [p/2]− 1]. Then
(a) ∀j ∈ [k + 1, [p/2]] & ∀D ∈ Dp, supp γpk(D ∩ Ipj , ·) ∈ N`p−2k ;
(b) in particular, ∀D ∈ Dp, supp γpk(D ∩ Ip[p/2], ·) ∈ N`p−2k .

Proof. (a) To fall back on our previous notation, write k̄ instead of j. Then k̄ ∈
[k + 1, [p/2]], i.e. k̄ 6∈ [0, k], and therefore by theorem 7.5(a),

∀h ∈ Rp−2k
∗ , ∀π ∈ Π p

k & ∀π̄ ∈ Π p

k̄
, {I(π̄, p)}pπ(h) ∈ N`k .(1)

Now fix h ∈ Rp−2k
∗ & π ∈ Π p

k . Since, cf. (4.5), Ip
k̄

=
⋃
π̄∈Πp

k̄

I(π̄, p), therefore appealing
to the Boolean homomorphism in 4.11, we get

(Ip
k̄
)pπ(h) =

⋃
π̄∈Πp

k̄

{I(π̄, p)}pπ(h) ∈ N`k , by (1).(2)

Now let D ∈ Dp. Then since obviously (D ∩ Ip
k̄
)pπ(h) ⊆ (Ip

k̄
)pπ(h), we see from (2)

that (D ∩ Ip
k̄
)pπ(h) ∈ N`k , i.e.

λpπ(D ∩ Ip
k̄
)pπ(h) := `k[(D ∩ Ipk̄)pπ(h)] = 0.
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As this holds for all π ∈ Π p
k , we get

γpk(D ∩ Ip
k̄
, h) =

∑
π∈Πp

k

λpπ(D ∩ Ip
k̄
, h) = 0.(3)

As (3) holds for all h ∈ Rp−2k
∗ = Rp−2k\Ip−2k

1 , we see that

supp γpk(D ∩ Ip
k̄
, ·) ⊆ Ip−2k

1 ∈ N`p−2k , by (4.14).

Thus (a).
(b) just records (a) for the terminal case j = [p/2].

This brings us to our concluding theorem, on the second absolute moment of
ξp(D ∩ Ipp/2) for even p:

7.7. Fundamental theorem. Let p ∈ N+ be even. Then

∀D ∈ Dp, EP{ξp(D ∩ Ipp/2)} = |ξp(D ∩ Ipp/2)|L2 .

Proof. Let D ∈ Dp and write C := D ∩ Ipp/2 for brevity. Then by 5.7, 5.3 and 5.9,

|ξp(C)|2 =
[p/2]∑
k=0

Γ pp
k (C,C) =

(p/2)−1∑
k=0

Γ pp
k (C,C) + [EP{ξp(C)}]2.

Hence we have only to show that

∀k ∈ [0, (p/2)− 1], Γ pp
k (C,C) = 0.(I)

Proof of (I). Let k ∈ [0, (p/2)− 1]. Then by 5.1,

Γ pp
k (C,C) :=

∑
φ∈Perm(p−2k)

∫
Rp−2k

γpk(C, h)γpk(C, hφ)`p−2k (dh).(1)

But by corollary 7.6(b),

supp γpk(C, ·) := supp γpk(D ∩ Ipp/2, ·) ∈ N`p−2k .

Hence RHS(1) = 0, i.e. we have (I).

Thus, for even p, the second absolute moment of ξp(D∩Ipp/2) is equal to the square
of its expectation, i.e. its standard deviation vanishes. Thus

ξp(D ∩ Ipp/2)(·) = EP{ξp(D ∩ Ipp/2)}, a.e. (P) on Ω.(1)

It follows from 5.9 and the fact that, cf. 7.1(b), ∀π ∈ Π[1,p], I(π, p) ⊆ Ipp/2, that

RHS(1) =
∑

π∈Π[1,p]

`p/2[℘π∗{D ∩ Ipp/2 ∩ I(π, p)}]

=
∑

π∈Π[1,p]

`p/2[℘π∗{D ∩ I(π, p)}] = EP{ξp(D)}.

We thus obtain the following important corollary to the effect that for even p, taking
the intersection with the smallest diagonal skeleton Ipp/2 reduces the random variable
ξp to constancy; more precisely:
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7.8. Corollary. ∀ even p ∈ N+ & ∀D ∈ Dp,
ξp(D ∩ Ipp/2)(·) = EP{ξp(D)}, a.e. (P) on Ω.

8. The subspaces Sξp spanned by the ξp

Our goal now is to study the relationship between the subspaces Sξp of L2 spanned
by the ranges of the measures ξp, p ∈ N+. In symbols, with the notation 1.1(f),

∀p ∈ N+, Sξp := S{ξp(D) : D ∈ Dp} ⊆ L2.(8.1)

It is convenient to extend this symbolism to p = 0, by letting ξ0 be the trivial
measure introduced in 3.1. Then Sξ0 is the one-dimensional subspace of L2 spanned
by all constant-valued functions. Writing 1(·) for the function on Ω whose value is
constantly 1, we have

Sξ0 := {c · 1(·) : c ∈ R} ⊆ L2.(8.2)
We first assert that to determine Sξp it suffices to restrict ξp to the pre-ring Pp.

For this we appeal to the theory of the control measure. From the local strong
boundedness of ξp, cf. proposition 5.8, it follows that

∃µ ∈ CA(Dp,R0+) 3 ξp ≺≺ µ.(8.3)

This is a theorem of Brooks (1971); for ξp, however, we have the specific realization
µ = µp given by 5.23(b). Now it is classical that if µ ∈ CA(Dp,R0+), where D =
δ-ring(P), P being any pre-ring, then for all D ∈ D, there exists a sequence (Pn)∞n=1
in P such that µ(D) = limn→∞ µ(Pn). It follows from this and (8.3) that

∀D ∈ Dp, ∃ a sequence (Pn)∞n=1 in Pp 3 ξp(D) = lim
n→∞

ξp(Pn).9(8.4)

From (8.4) we see at once that

Sξp = S{ξp(P ) : P ∈ Pp}.(8.5)

This equality is useful since it is easier to deal with Pp than with Dp.
To turn to the relationship between the subspaces Sp, we first assert that

8.6. Triviality. ∀p, q ∈ N+, Sξp ⊥ Sξq ⇐⇒ p+ q is odd.

Proof. The implication ⇐= is immediate from (3.9) and (8.5). As for =⇒, let
p + q = 2r be even, and A ∈ P1 be such that `1(A) > 0. Then Ap ∈ Pp, Aq ∈ Pq,
and a routine computation based on the covariance formula in 3.13(a) and 6.18(c)
shows that

(ξp(Ap), ξq(Aq)) = |ξr(Ar)|2 = {`1(A)}r
[
r! +

[r/2]∑
k=1

(
r

2

)2

(r − 2k)!(α2k)2
]
> 0.

Thus, ξp(Ap) is not ⊥ to ξq(Aq), and therefore, Sξp is not ⊥ to Sξq .
We investigate next the relationship between Sξp and Sξq when q < p and p + q

is even. It turns out that Sξq ⊆ Sξp . To establish this far from obvious inclusion, we

9 It is possible to prove (8.4) without appealing to (8.3), but the construction of the Pn is complicated.

Phil. Trans. R. Soc. Lond. A (1997)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


1160 P. R. Masani

first restate the important corollary 7.8 involving the diagonal skeleton Ipp/2 in terms
of Sξ0 :

∀ even p, ξp(D ∩ Ipp/2) = EP{ξp(D)} · 1(·) ∈ Sξ0 .(8.7)

In the light of (8.7), to show that Sξ0 ⊆ Sξp , for even p, we have only to select a
D in Dp for which EP{ξp(D)} 6= 0. The easiest choice is to let D be a hypercube, i.e
to let D = Ap, where A is a (non-void) interval in P1. Recall that by 1.19(d){

∀ even p ∈ N+ & ∀D ∈ D1 such that `1(A) > 0,
EP{ξp(Ap)} = αp/2{`1(A)}p/2 > 0.

(8.8)

The set Ap serves not only in showing that Sξ0 ⊆ Sξp for even p, but in showing
more generally that Sξp ⊆ Sξp+2k :

8.9. Theorem. ∀p, k ∈ N0+, Sξp ⊆ Sξp+2k .

Proof. Take any A in D1 such that `1(A) = (1/αk)1/k. Then (8.8) tells us that

A2k ∈ D2k & EP{ξ2k(A2k)} = 1.(1)

Now EA := A2k ∩ I2k
k ∈ D2k, and taking p = 2k in (8.7), we get, using (1),

ξ2k(EA) = EP{ξ2k(A2k)} · 1(·) = 1(·).(2)

Now let D ∈ Dp. Then by (5.13), D × EA ∈ Dp+2k, and

ξp(D) = ξp(D) · 1(·) = ξp(D) · ξ2k(EA) by (2)

= ξp+2k(D × EA) ∈ Sξp+2k , by theorem 5.14.

It follows that Sξp ⊆ Sξp+2k .

For k 6= 0, Sξp 6= Sξp+2k , obviously, i.e. the inclusion is proper. We may therefore
sum up the relationship between the subspaces in the scheme:

Sξ0 ⊂ Sξ2 ⊂ Sξ4 ⊂ · · · ⊂ Sξ2k ⊂ · · ·
Sξ1 ⊂ Sξ3 ⊂ Sξ5 ⊂ · · · ⊂ Sξ2k+1 ⊂ · · ·
∞⋃
m=0

Sξ2m ⊥
∞⋃
n=0

Sξ2n+1 .

(8.10)

Let us write:

Lξ2 := cls
∞⋃
k=0

Sξk , (Lξ2)+ := cls
∞⋃
n=0

Sξ2n , (Lξ2)− := cls
∞⋃
n=0

Sξ2n+1 .(8.11)

Then from (8.10) it follows that

Lξ2 := (Lξ2)− + (Lξ2)+, (Lξ2)− ⊥ (Lξ2)+.(8.12)

Taking into account the important property (8.5) of the spaces Sξp , it is clear that
Lξ2 is the closure of the set of all linear combinations of 1(·) and of finite products
such as ξ(P 1) · ξ(P 2) · · · ξ(P q), where P i ∈ D1. In this, q can be any positive integer.
These products include of course the powers ξ(Q)q, where Q ∈ P1. We can include
the unit 1 in the collection of powers by taking q = 0 : ξ(Q)0 = 1(·). Thus letting

Aξ := the (unitized) linear algebra over R spanned by ξ1(D1), i.e. by(8.13)

the range of ξ1,
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we see that
Lξ2 = clsAξ in L2.(8.14)

Thus we may restate (8.12) in the form

clsAξ = (Lξ2)− + (Lξ2)+, (Lξ2)− ⊥ (Lξ2)+.(8.15)

The special case clsAξ = L2 is of interest. Recalling that L2 = L2(Ω,A,P;R), let

Aξ := σ-alg{ξ−1(P ) : P ∈ P1}.(8.16)

Then obviously Aξ ⊆ A. We have, cf. Kakutani (1950, pp. 319–320), the following
result:

8.17. Proposition. The following conditions are equivalent:
(α) clsAξ = L2 = L2(Ω,A,P;R),
(β) ∀A ∈ A, ∃B ∈ Aξ 3 P (A+B) = 0, where + refers to the symmetric difference.

Thus by restricting the initial σ-algebra A to Aξ and correspondingly restricting
the probability P, we can ensure the condition 8.17(α), and affirm the orthogonal
decomposition (8.15) for the entire space L2 : L2 = (L2)− + (L2)+, L−2 ⊥ L+

2 .

The equality (8.7) shows that for even p, intersecting a set D in Dp, with the
diagonal skeleton Ipp/2 has the severe effect of forcing ξp(D ∩ Ipp/2) to fall into Sξ0 , i.e.
of turning it into a constant-valued random variable. How correspondingly severe is
the effect of intersection with the other skeletons? The answer is that ξp(D ∩ Ipk) ∈
Sξp−2k , cf. 8.21 below. Interestingly, this general result can be proved by use of the
special case of (8.7) for p = 2, namely,

∀D ∈ D2, ξ2(D ∩ I2
1 ) ∈ Sξ0 .(8.18)

This happens, thanks to the following simple result on the k-standard partition
(6.11):

8.19. Triviality. Let p ∈ N+, k ∈ [1, [p/2]] &

πk = {{1, 2}, {3, 4}, . . . , {2(k − 1), 2k}} ∈ Π[1,2k].

Then I(πk, p) = (I2
1 )k × Rp−2k.

It is convenient to state as a separate lemma, a harder result needed in the proof
of the theorem to follow:

8.20. Lemma. Let (i) p ∈ N+ & k ∈ [1, [p/2]], (ii) π ∈ Π p
k . Then

∀D ∈ Dp, ξp{D ∩ I(π, p)} ∈ Sξp−2k .

Proof. We first show that it suffices to take π to be the k-standard partition πk.
For take φ = φ−1

π ∈ Perm(p) as in definition 6.12, so that {I(π, p)}φ = I(πk, p), cf.
6.13(b). Then by 6.1(a),

ξp{D ∩ I(π, p)} = ξp[Dφ ∩ I(π, p)φ] = ξp[Dφ ∩ I(πk, p)].

It thus suffices to show that

∀E ∈ Dp, ξp{E ∩ I(πk, p)} ∈ Sξp−2k .(I)

Proof of (I). Case 1. Let E = P = P 1 × · · · × P p. Then

E = (P 1 × P 2)× · · · × (P 2k−1 × P 2k)×
p×

i=2k+1
P i,
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and by triviality 8.19,

I(πk, p) = I2
1 × · · · × I2

1 × Rp−2k,

the factor I2
1 being repeated k times. Thus,

E ∩ I(πk, p) = {(P 1 × P 2) ∩ I2
1} × · · · × {(P 2k−1 × P 2k) ∩ I2

1} ×
p×

i=2k+1
P i.

Iterated application of theorem 5.11 now yields

ξp{E ∩ I(πk, p)} = ξ2{(P 1 × P 2) ∩ I2
1} · · · ξ2{(P 2k−1 × P 2k) ∩ I2

1} · ξp−2k

( p×
i=2k+1

P i
)

= c11(·) · · · ck1(·) · ξp−2k

( p×
i=2k+1

P i
)
∈ Sξp−2k , by (8.18).

Thus
∀P ∈ Pp, ξp{P ∩ I(πk, p)} ∈ Sξp−2k .(1)

Next consider D = R ∈ Rp. Since R =
⋃r

1 Pi, where Pi ∈ Pp are ‖, it easily follows
from the finite additivity of ξp that

∀R ∈ Rp, ξp{R ∩ I(πk, p)} ∈ Sξp−2k .(2)

Finally, let
F = {F : F ∈ Dp & ξp{F ∩ I(πk, p)} ∈ Sξp−2k}.

Then by (2), Rp ⊆ F ⊆ Dp, whence Dp = δ-mon(F). But it is easily seen that F
is itself a δ-monotone class. For let ∀k ∈ N+, Fk ∈ D & Fk ↓ E. Then E ∈ Dp and
since each ξp(Fk) ∈ Sξp−2k , it follows from the countable additive of ξp that

ξp(E) = lim
n→∞

ξp(Fk) ∈ Sξp−2k .

Thus, E ∈ F . The same argument shows that

∀k ∈ N+, Fk ∈ F & Fk ↑ E ⊆ F ∈ F =⇒ E ∈ F .
Thus, Dp = δ-mon(F) = F , i.e. ∀D ∈ Dp, ξp{D∩ I(πk, p)} ∈ Sξp−2k . This proves (I).

8.21. Theorem. Let p ∈ N+ & k ∈ [1, [p/2]]. Then ∀D ∈ Dp, ξp(D ∩ Ipk) ∈ Sξp−2k .

Proof. Let D ∈ Dp. Then

D ∩ Ipk =
⋃
π∈Πp

k

{D ∩ I(π, p)}.

There are, cf. (1.17), r :=
(
q
2k

)
α2k terms in this union, which we may denumerate in

any order by denumerating the partitions π as π1, π2, . . . , πr. Then, writing ∀i ∈ [1, r],
Dπi := D ∩ I(πi, p), we have D ∩ Ipk =

⋃r
i=1Dπi , whence by the inclusion-exclusion

principle

ξp(D ∩ Ipk) =
r∑
i=1

ξp(Dπi)−
r−1∑
i=1

r∑
j=i+1

ξp(Dπi ∩Dπj )

+ · · ·+ (−1)r+1ξp(Dπ1 ∩Dπ2 · · · ∩Dπr)

= S1 − S2 + · · ·+ (−1)r+1Sr, say.(1)
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Now by lemma 8.20, ∀i ∈ [1, r], ξp(Dπi) := ξ[D ∩ I(πi, p)] ∈ Sξp−2k . Hence S1 ∈
Sξp−2k . Next consider the generic term in S2, namely,

ξ(Dπi ∩Dπj ) = ξp{D ∩ I(πi, p) ∩ I(πj , p)}.(2)

Since D ∩ I(πi, p) ∈ Dp, it follows from lemma 8.20 that RHS(2) ∈ Sξp−2k . Thus,
ξ(Dπi ∩Dπj ) ∈ Sξp−2k , whence

S2 :=
r−1∑
i=1

r∑
j=i+1

ξ(Dπi ∩Dπj ) ∈ Sξp−2k .

Proceeding in this way, we can show that S3, S4, . . . , Sr ∈ Sξp−2k . The result now
follows from (1).

9. Concordance of the orthogonal and Lebesgue decompositions
ηp + ζp of ξp

Let L0 be a (closed linear) subspace of L2. Denoting by proj(x|L0) the orthogonal
projection of a vector x ∈ L2 on L0, we now introduce the measures obtained by the
projection of ξp onto Sξq and onto S⊥ξq :
9.1. Definition. Let p ∈ N+ & q ∈ N+0 be such that p+ q be even and q < p. Then,
∀D ∈ Dp,

ηp,q(D) := proj(ξp(D)|S⊥ξq), ζp,q(D) := proj(ξp(D)|Sξq).

It follows of course that{
∀p, q as in definition 9.1, ηp,q, ζp,q ∈ CA(Dp,L2) &
∀D ∈ Dp, ξp(D) = ηp,q(D) + ζp,q(D), ηp,q(D) ⊥ ζp,q(D).

(9.2)

From this we readily get the following result:

9.3. Triviality. Let p, q be as in definition 9.1,
(a) Sξp = Sξq + Sηp,q , Sξq ⊥ Sηp,q ;
(b) Sηp,q = Sξp ∩ S⊥ξq .
Proof. (a) The orthogonality is obvious from the definitions of ηp,q and ζp,q, as is

the inclusion
Sξp ⊆ Sξq + Sηp,q .(1)

Next, by the crucial inclusions (8.10),

ηp,q(D) = ξp(D)− ζp,q(D) ∈ Sξp + Sξq ⊆ Sξp ,
whence Sηp,q ⊆ Sξp and therefore certainly

Sξq + Sηp,q ⊆ Sξp .(2)

By (1) and (2) we have the equality in (a). Hence (a).
(b) is just a restatement of (a).

The next theorem asserts that the projection ζp,q(D) can be had by intersecting
D with the (p− q)/2th diagonal skeleton of Rp, roughly speaking. More precisely:
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9.4. Theorem. Let p ∈ N+ & j ∈ [1, [p/2]]. Then, ∀D ∈ Dp,
ζp,p−2j(D) = ξp(D ∩ Ipj ), ηp,p−2j(D) = ξp(D\Ipj );

in particular (for j = [p/2])
for even p, ζp,0(D) = ξp(D ∩ Ipp/2), ηp,0(D) = ξp(D\Ipp/2),
for odd p, ζp,1(D) = ξp(D ∩ Ip[p/2]−1), ηp,1(D) = ξp(D\Ip[p/2]−1).

Proof. Let D ∈ Dp. Since by theorem 8.21, ξp(D ∩ Ipj ) ∈ Sξp−2j , to prove the first
equality we have only to show that

ξp(D)− ξp(D ∩ Ipj ) ⊥ Sξp−2j .(I)

Proof of (I). Let E ∈ Dp−2j . Then by the covariance equality 5.3,

(ξp(D)− ξp(D ∩ Ipj ), ξp−2j(E)) = (ξp(D\Ipj ), ξp−2j(E))

=
[(p−2j)/2]∑

k=0

Γ p,p−2j
k (D\Ipj , E).(1)

Writing D̄ = D\Ipj , we have, cf. 5.1

Γ p,p−2j
0 (D̄, E) :=

∑
φ∈Perm(p−2j)

∫
Rp−2j

γpj (D̄, h)χE(hφ)`p−2j (dh),(2)

and ∀k ∈ [1, [(p− 2j)/2]],

Γ p,p−2j
k (D̄, E) :=

∑
φ∈Perm(p−2j−2k)

∫
Rp−2j−2k

γpj+k(D̄, h)γp−2j
k (E, hφ)`p−2j−2k (dh).(3)

Now grant momentarily that

(A) ∀k ∈ [0, [(p− 2j)/2]], ∀π ∈ Π p
j+k & ∀h ∈ Rp−2(j+k), λpπ(D̄, h) = 0.

Then, ∀k ∈ [0, [(p− 2j)/2]],

γpj+k(D̄, h) :=
∑

π∈Πp
j+k

λpπ(D̄, h) = 0,

whence by (2) and (3) for each k ∈ [0, [(p − 2j)/2], Γ p,p−2j
k (D̄, h) = 0, and by (1),

ξp(D)− ξp(D ∩ Ipj ) ⊥ ξp−2j(E). As this holds for any E ∈ Dp−2j , we have (I).
It remains to justify (A).
Proof of (A). Let k, π, h be as in (A). Then

λpπ(D̄, h) := `j+k[℘π∗{(D\Ipj ) ∩ Ipπ(h)}] = `j+k[℘π∗{D ∩ (Ipπ(h)\Ipj )}].(4)

But by (4.7) and 7.1(a), Ipπ(h) ⊆ I(π, p) ⊆ Ipj+k ⊆ Ipj , i.e. Ipπ(h)\Ipj = ∅. Hence by
(4), λpπ(D̄, h) = 0. Thus (A).

This establishes (I) and with it the first equality in 9.4. The second obviously
follows from this and the equality in (9.2).

In exact analogy with 5.22, we deduce as a corollary of 9.4:

9.5. Corollary. Let p ∈ N+ & j ∈ [1, [p/2]]. Then ∀x′ ∈ (L2)′ & ∀A ∈ Bp,
|x′ ◦ ηp,p−2j |(A) = |x′ ◦ ξp|(A\Ipj ), |x′ ◦ ζp,p−2j |(A) = |x′ ◦ ζp|(A ∩ Ipj ),
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|x′ ◦ ξp|(A) = |x′ ◦ ηp,p−2j |(A) + |x′ ◦ ζp,p−2j |(A).

The two-step projections ηp,p−2 and ζp,p−2, obtained by taking j = 1, are the really
important ones and we give them a special notation: ηp := ηp,p−2, ζp := ζp,p−2. More
fully,

9.6. Definition. For p ∈ N+, p > 2, we define, ∀D ∈ Dp,
ηp(D) := proj(ξp(D)|S⊥ξp−2

), ζp(D) := proj(ξp(D)|Sξp−2).

For completeness we set η1 := ξ1 and ζ1 := 0, η0 := ξ0.

As a special case of (9.2), we have ∀p ∈ N+, ηp, ζp ∈ CA(Dp,L2) &

∀D ∈ D, ξp(D) = ηp(D) + ζp(D), ηp(D) ⊥ ζp(D).
(9.7)

Also, triviality 9.3 yields as a special case the following orthogonal decomposition
for the subspaces Sξp :
9.8. Triviality. Let p, q ∈ N+ & 2 6 q < p. Then

(a) Sξp = Sηp + Sξp−2 , Sηp ⊥ Sξp−2 ;

(b) Sηp = Sξp ∩ S⊥ξp−2
;

(c) Sηp ⊥ Sηq , even for q = 0 and 1.

By iteration of the decomposition 9.8(a), we obtain the orthogonal decompositions:

∀ odd p > 1, Sξp = Sηp + Sηp−2 + · · ·+ Sη3 + Sη1 ,

∀ even p > 0, Sξp = Sηp + Sηp−2 + · · ·+ Sη2 + Sη0 ,

∀p, q ∈ N+ 3 p+ q is even & q < p,

Sξp =
[(p−q)/2]∑
j=1

Sηq+2j + Sξq ,
[(p−q)/2]∑
j=1

Sηq+2j ⊥ Sξq .

(9.9)

It follows at once from the first two equalities in (9.9) that

∀p ∈ N+ & ∀D ∈ Dp, ξp(D) =
[p/2]∑
k=0

proj(ξp(D)|Sηp−2k).(9.10)

To turn to the connection between ηp, ζp and the Lebesgue components ξap , ξbp,
note that on taking j = 1 in 9.4, we get

∀D ∈ Dp, ζp(D) = ξp(D ∩ Ip1 ), ηp(D) = ξp(D\Ip1 ).(9.11)

On comparing this with the definitions of ξap , ξbp in (5.16), and recalling the Lebesgue
decomposition theorem 5.18, we get at once the following useful result:

9.12. Concordance theorem. Let p ∈ N+. Then there is a concordance between
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the two-step orthogonal decomposition of ξp, and the Lebesgue decomposition of ξp
with respect to `p. More precisely,

∀D ∈ Dp, ζp(D) = ξbp(D) & ηp(D) = ξap(D).

Moreover, ηp and `p are equivalent, i.e. Nηp = N`p .
In the light of this theorem we shall abandon the notation ξap , ξbp in favour of the

shorter ηp, ζp. For ready reference in the sequel we restate the results 5.17(a)–(d),
5.18(b), (6.3), 5.22 on ξap , ξbp in terms of ηp, ζp:

9.13. Proposition. (Summary) Let p ∈ N+. Then
(a) ∀D,E ∈ Dp, (ηp(D), ηp(E)) =

∑
φ∈Perm(p) `p(D ∩ Eφ), EP{ηp(·)} = 0 on Dp;

(b) ∀D ∈ Dp, √`p(D) 6 qηp(D) = |ηp(D)| = sηp(D) 6 √p!√`p(D);
(c) ∀A ∈ Bp, √|`p|(A) 6 qηp(A) = sηp(A) 6 √p!√|`p|(A);
(d) ηp & `p are equivalent: Nηp = N`p , & `p |= ζp;
(e) ∀D,E ∈ Dp,

(ζp(D), ζp(E)) =
[p/2]∑
k=1

Γ pp
k (D,E);

(f) ∀φ ∈ Perm(p) & ∀D ∈ Dp, ηp(Dφ) = ηp(D), ζp(Dφ) = ζp(D);
(g) ∀φ ∈ Perm(p), ∀x′ ∈ (L2)′ & ∀A ∈ Bp,

|x′ ◦ ηp|(Aφ) = |x′ ◦ ηp|(A), |x′ ◦ ζp|(Aφ) = |x′ ◦ ζp|(A);

|x′ ◦ ξp|(A) = |x′ ◦ ηp|(A) + |x′ ◦ ζp|(A);
(h) ∀A ∈ Bp, 1

2{sηp(A) + sζp(A)} 6 sξp(A) 6 sηp(A) + sζp(A).

9.14. Remarks. A comparison of the formulae in 9.8(c), 9.13(a) and 5.3 shows that
the covariance structure of ηp is considerably simpler than that of ξp. Indeed when
restricted to the δ-ring Dsym

p of symmetric subsets of Dp, the ηp are biorthogonally
scattered :

∀D ∈ Dsym
p & ∀E ∈ Dsym

q , (ηp(D), ηq(E)) = p!`p(D ∩ E) · δpq.
Thus, Rstr.Dsym

p
ηp ∈ CAOS(Dsym

p ,L2).

An expression for proj(ξp(D)|Sηq) in terms of ξp(·), where q < p and p− q is even,
involving diagonal skeletons as in theorem 9.4, emerges as a simple corollary of the
latter. It is convenient to introduce the notation

∀p ∈ N+, ∀k ∈ [0, [p/2]] & ∀D ∈ Dp, ξp,k(D) := proj(ξp(D)|Sηp−2k).(9.15)

Note. Obviously, ξp,0(D) = ηp(D), and

ξp,[p/2](D) :=

{
proj(ξp(D)|Sξ1) = ζp,1(D), p odd,
proj(ξp(D)|Sξ0) = ζp,0(D), p even.

With this notation, we have:

9.16. Corollary. Let p ∈ N+ & k ∈ [0, [p/2]]. Then
(a) ∀D ∈ Dp, ξp,k(D) = ξp{D ∩ (Ipk\Ipk+1)}, where Ip[p/2]+1 := ∅;
(b) ∀x′ ∈ (L2)′ & ∀A ∈ Bp, |x′ ◦ ξp,k|(A) = |x′ ◦ ξp|{A ∩ (Ipk\Ipk+1)};
(c) ∀φ ∈ Perm(p), ∀x′ ∈ (L2)′, ∀D ∈ Dp & ∀A ∈ Bp,

ξp,k(Dφ) = ξp,k(D) & |x′ ◦ ξp,k|(Aφ) = |x′ ◦ ξp,k|(A).
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Proof. (a) Let D ∈ Dp & 0 6 k 6 [p/2] − 1. Then since by (9.15), ξp,k(D) =
proj(ξp(D)|Sηp−2k) and by 9.8(b), Sηp−2k = Sξp−2k ∩ S⊥ξp−2k−2, it follows, cf. 9.1, that

ξp,k(D) = ζp,p−2k(D)− ζp,p+2k−2(D)

= ξp(D ∩ Ipk)− ξp(D ∩ Ipk+1) by theorem 9.4

= ξp{D ∩ (Ipk\Ipk+1)}, since Ipk+1 ⊆ Ipk .

But the last equality also holds for k = [p/2], for then Ipk+1 := ∅, and we know from
9.4 that

ξp,[p/2](D) =

{
ζp,0(D)
ζp,1(D)

}
= ξp(D ∩ Ip[p/2]).

Thus (a).
(b) follows on applying the classical triviality that if µ0 is defined on Dp by µ0(·) =

µ(· ∩B), where B ∈ Bp, then |µ0|(·) = |µ|(· ∩B) on Bp.
(c) follows at once from (a) and (b) by virtue of the symmetry of Ipk\Ipk+1, cf. 7.1(c)

Theorem 9.4 and corollary 9.16(a) show that there is a kind of isomorphism be-
tween the calculus of projections of ξp(D) on the Sξq and S⊥ξq , and the set-theoretic
calculus of diagonal skeletons.

To turn to the expectations of the measures we have been considering, much light
is shed by the easily proved result:

∀x ∈ L2, proj(x|Sξ0) = EP(x) · 1(·).(9.17)

We have the following proposition:

9.18. Proposition. Let p ∈ N+ & D ∈ Dp. Then
(a) for odd p, EP{ξp(D)} = 0, and for even p,

EP{ξp(D)} = |ξp{D ∩ Ipp/2}| =
∑

π∈Π[1,p]

`p/2{D ∩ I(π, p)};

(b) for 1 6 q < p such that p− q is even,

EP{ηp,q(D)} = 0 & EP{ζp,q(D)} = EP{ξp(D)}.
Proof. (a) For odd p, see 5.9(b). For even p, the two equalities just repeat theorem

7.7 and 5.9(a).
(b) For odd p, EP{ηp,q(D)} = EP{ξ(D\Ip(p−q)/2)} = 0, by 9.4 and 5.9(b). For even

p, since Sξ0 ⊆ Sξq ⊥ S⊥ξq and ηp,q(D) := proj(ξp(D)|S⊥ξq) ⊥ Sξ0 , it is clear from (9.17)
that EP{ηp,q(D)} = 0. Since ζp,q = ξp−ηp,q, it follows that EP{ζp,q(D)} = EP{ξp(D)}.
Thus (b).

Taking q = p− 2 in 9.18(b), we recover the second equation in 9.13(a):

∀p ∈ N+ & ∀D ∈ Dp, EP{ηp(D)} = 0 & EP{ζp(D)} = EP{ξp(D)}.(9.19)

Finally, we note that the orthogonality of the decompositions in (9.9) allows us
to infer the following orthogonal decomposition of the subspace Lξ2 of L2 defined in
(8.11):

Lξ2 =
∞∑
p=0

Sηp , (Lξ2)− =
∞∑
k=0

Sη2k+1 , (Lξ2)+ =
∞∑
k=0

Sη2k .(9.20)
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Part II. Chaotic integration

10. Integrability and integration with respect to the measure ηp

Because of the greater simplicity of the covariance structure of ηp in comparison
with that of ξp, cf. 9.14, we shall first attend to integrability and integration with
respect to ηp. Later (§13) we shall show that integration with respect to ξp is reducible
to integration with respect to ηp. The rudiments, however, which apply to both
measures, are dealt with in Appendix A under the neutral notation

ρ ∈ CA(D,H),

whereD is any δ-ring over a space Λ, andH any Hilbert space. There the fundamental
classes S (D,R), P1,ρ of D-simple and ρ-integrable functions, respectively, are defined,
as is the operator Eρ of integration with respect to ρ, cf. (A.12), (A.10). The reader
is requested to consult this appendix.

To turn to results specific to the measure ηp, we have first:

10.1. Lemma. ∀f, g ∈ S (Dp,R), cf. (A.4),

(∗) (Eηp(f),Eηp(g)) = p!
∫
Rp
f̃(t)g̃(t)`p (dt),

where f̃ , g̃ are the symmetrizations of f and g.

Proof. Let f =
∑r

k=1 akχDk , g =
∑r

k=1 bkχEk & Dk, Ek ∈ Dp. Then using the
definition (A.25), of Eηp(f) for simple f , and 9.13(a), it is easily checked that the
LHS in (∗) is equal to

r∑
j=1

r∑
k=1

ajbk
∑

φ∈Perm(p)

`p(Dj ∩ Eφ−1

k ).(1)

Next, symmetrization ˜ being linear, cf. 1.46, the RHS in (∗) is equal to

p!
r∑
j=1

r∑
k=1

ajbk(χ̃Dj , χ̃Ek)2,`p .(2)

But since ˜ is in fact an orthogonal projection, cf. 6.19, the last inner product equals

(χ̃Dj , χ̃Ek)2,`p = (χDj , χ̃Ek)2,`p =
1
p!

∑
φ∈Perm(p)

(χDj , χEφ−1

k

)2,`p

=
1
p!

∑
φ∈Perm(p)

`p(Dj ∩ Eφ−1

k ).

Thus the RHS in (∗) also equals (1).

We next assert:

10.2. Lemma. Let f ∈ P1,ηp . Then
(a) f ∈M(Bp,B1), f̃ ∈ P1,ηp & f̃ ∈ L2(Rp);
(b) ∀s ∈ S (Dp,R),

√
p! |f̃ − s̃|2,`p 6 |f − s|1,ηp .

Proof. (a) The first statement is a part of the definition of P1,ηp , cf. (A.17) and
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(A.10), and that f̃ ∈ P1,ηp is clear, since ηp is a permutation-invariant, cf. 9.13(f)
and A.35(b).

Next, by (A.14) and (A.26), there exists (sn)∞n=1 in S (Dp,F) such that

|Eηp(f − sn)| 6 |(f − sn)|1,ηp → 0, as n→∞.(1)

Thus, ∀m,n ∈ N+,

|Eηp(sm − sn)| 6 |sm − sn|1,ηp → 0, as m,n→∞,
i.e. by the last lemma (with f = g = |sm − sn|),√

p! |s̃m − s̃n|2,`p 6 |sm − sn|1,ηp → 0, as m,n→∞.(2)

It follows from (2) that

∃g ∈ L2(Rp) 3 |s̃n − g|2,`p → 0, as n→∞.(3)

We now appeal to the subsequence principle A.15, and obtain a subsequence
(snk)∞k=1 and a set N ∈ Nηp = N`p , cf. 9.13(d), such that

∀t ∈ Rp\N, lim
k→∞

snk(t) = f(t) & lim
k→∞

s̃nk(t) = g(t).

It follows that f̃ = g, a.e. `p and a.e. ηp. Hence by (3), f̃ ∈ L2(Rp). Thus (a).
(b) Let s ∈ S (Dp,R). Then exactly as with (2), we have

∀m ∈ N+,
√
p! |s̃m − s̃|2,`p 6 |sm − s|1,ηp .(4)

Letting m→∞, we conclude from (3) and (1) that
√
p! |g − s̃|2,`p 6 |f − s|1,ηp .

Since g = f̃ , we have (b).

10.3. Theorem. Let p ∈ N+ & f, g ∈ P1,ηp . Then
(a) (Eηp(f),Eηp(g))L2 = p!(f̃ , g̃)2,`p ;
(b) |Eηp(f)|L2 =

√
p! |f̃ |2,`p 6

√
p! |f |2,`p , for symmetric f , |Eηp(f)|L2 =

√
p! |f |2,`p ;

(c) Eηp(f) = Eηp(f̃);
(d) EP{Eηp(f)} = 0.

Proof. (a) By (A.14), there exists functions s1
n, s

2
n ∈ S (Dp,F) such that

|s1
n − f |1,ηp → 0 & |s2

n − g|1,ηp → 0, as n→∞.(1)

By lemma 10.1,
(Eηp(s1

n),Eηp(s2
n)) = p!(s̃1

n, s̃
2
n).(2)

By definition A.26, LHS(2)→ (Eηp(f),Eηp(g)), as n→∞. Next, by (1) and lemma
10.2(b),

|s̃1
n − f̃ |2,`p → 0 & |s̃2

n − g̃|2,`p → 0, as n→∞,
whence, RHS(2)→ p!(f̃ , g̃). Thus (2) reduces to (a).

(b) The equality in (b) follows on taking g = f in (a), and the inequality from
(6.20). Thus (b).

(c) By (b) and the equality ˜̃
f = f̃ ,

|Eηp(f̃)− Eηp(f)| = √p! |(f̃ − f)˜|2,`p = |( ˜̃
f − f̃)|2,`p = 0.

Hence (c).
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(d) We appeal to the Pettis property (A.32), (A.33) that

LHS(d) = EP
{∫

Rp
f(t)ηp (dt)

}
=
∫
Rp
f(t) · (EP ◦ ηp) (dt) = 0, by 9.13(a).

Note. The equality in 10.3(c) prevails only when f ∈ P1,ηp . It may happen that
f̃ ∈ P1,ηp & f 6∈ P1,ηp . Take p = 2 and f(t) = t1− t2 on R2. Then f̃ = 0 and trivially
f̃ ∈ P1,η2 . But f 6∈ L2(R2) and hence, cf. 10.5(a) below, f 6∈ P1,η2 .

We now turn to the demarcation of the class P1,ηp . The next crucial lemma is
obtained by careful analysis of the quasi- and semi-variations of the indefinite integral
νηp,f defined in (A.36). It is not, however, the best possible, and is superseded by
corollary 11.4(a) below. Taking D = Dp & ρ = ηp in (A.12), we have Dloc

p = Bp.
Hence the inequalities in (A.4) read

∀A ∈ Bp, qνηp,f (A) 6 sνηp,f (A) 6 2qνηp,f (A).

10.4. Main lemma.
(a) Let f ∈M(Bp,B1). Then |f |1,ηp 6 2

√
p! |f |2,`p 6∞.

(b) Let f ∈ P1,ηp . Then (1/
√
p!)|f |2,`p 6 |f |1,ηp 6 2

√
p!|f |2,`p <∞.

Proof. (a) Taking ρ = ηp in the inequalities in corollary A.39, we get

sup
C∈Dηp (f)

|Eηp(fχC)| 6 |f |1,ηp 6 2 sup
C∈Dηp (f)

|Eηp(fχC)|.

Since for C ∈ Dηp(f), fχC is in P1,ηp , therefore by 10.3(b),

|Eηp(fχC)| = √p! |(fχC)˜|2,`p .
Thus √

p! sup
C∈Dηp (f)

|(fχC)˜|2,`p 6 |f |1,ηp 6 2
√
p! sup
C∈Dηp (f)

|(fχC)˜|2,`p .(1)

But since, cf. (6.20), symmetrization is | · |2,`p-norm contracting,

|f |1,ηp 6 RHS(1) 6 2
√
p! sup
C∈Dηp (f)

|(fχC)|2,`p 6 2
√
p! |f |2,`p .(2)

Thus (a).
(b) Since f ∈ P1,ηp , therefore cf. (A.37), Dηp(f) = Dloc

p = Bp. Hence

LHS(1) =
√
p! sup
C∈Bp

|(fχC)˜|2,`p >
1√
p!
|f |2,`p ,

the last very crucial step coming from the symmetrization inequality 6.22. Thus from
(1) we get

1√
p!
|f |2,`p 6 LHS(1) 6 |f |1,ηp .

Combining this with (a), we have (b).

10.5. Main theorem. Let p ∈ N+. Then
(a) P1,ηp = L2(Rp), and the norms | · |1,ηp , | · |2,`p are equivalent.
(b) (1/

√
p!)Eηp is a partial isometry on L2(Rp) into L2, &

Null space (Eηp) = {f : f ∈ L2(Rp) & f̃ = 0};
(c) (1/

√
p!)Eηp is an isometry on Lsym

2 (Rp) into L2.
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Proof. (a) Let f ∈ L2(Rp). Then by the main lemma 10.4(a), |f |1,ηp 6 2
√
p! |f |2,`p <

∞, whence by (A.10) and (A.17), f ∈ P1,ηp . Next, let f ∈ P1,ηp . Then, |f |1,ηp <∞,
whence by the main lemma (b), |f |2,`p <∞, i.e. f ∈ L2(Rp). Thus (a).

(b) follows immediately from (a) by virtue of the equalities in theorem 10.3(a), (b).
(c) For f, g ∈ Lsym

2 (Rp), theorem 10.3(a) reduces to

(Eηp(f),Eηp(g)) = p!(f, g)2,`p ,

and yields (c).

From theorem 10.5(b) and rudimentary Hilbert space theory, we see that RangeEηp
is a closed subspace of L2. Since, cf. (A.29), cls RangeEηp = Sηp , it follows that
RangeEηp = Sηp . Next in exact analogy with (8.4), we have

∀D ∈ Dp, ∃ a sequence (Pn)∞1 in Pp 3 ηp(D) = lim
n→∞

ηp(Pn),

whence exactly as in 8.5, Sηp = S{ηp(P ) : P ∈ Pp}. Thus

∀p ∈ N+, RangeEηp = Sηp = S{ηp(P ) : P ∈ Pp}.(10.6)

Combining (10.6) and main theorem 10.5, we see that:{
(1/
√
p!)Eηp is a partial isometry on L2(Rp) onto Sηp ,

(1/
√
p!)Eηp is an isometry on Lsym

2 (Rp) onto Sηp .
(10.7)

A considerable improvement of the inequalities in 10.4(b) results when f > 0. The
absolute value |Eηp(f)| comes into the picture, as the next result shows:

10.8. Theorem. Let f ∈ P1,ηp and f(·) > 0. Then |f |2,`p 6 |Eηp(f)| 6 |f |1,ηp .
Proof. The second equality is covered by (A.27). The proof of the first hinges on

the result 9.13(b), to wit,

∀D ∈ Dp, `p(D) 6 |ηp(D)|2.(1)

Case 1. Let f =
∑r

k=1 akχDk ∈ S (Dp,R0+). Then

|Eηp(f)|2 =
∣∣∣∣ r∑
k=1

akηp(Dk)
∣∣∣∣2

=
r∑

k=1

a2
k|ηp(Dk)|2 +

r−1∑
i=1

r∑
j=i+1

(aiηp(Dk), ajηp(Dj)).(2)

Now, by 9.13(a),

(aiηp(Di), ajηp(Dj)) = aiaj(ηp(Di), ηp(Dj))

= aiaj
∑

φ∈Perm(p)

`p(Di ∩Dφ
j ) > 0, since ai, aj > 0.

Hence by (2) and (1),

|Eηp(f)|2 >
r∑

k=1

a2
k|ηp(Dk)|2 + 0 >

r∑
k=1

a2
k`p(Dk) = |f |22,`p .

Thus the result holds in Case 1.
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Case 2. Let f ∈ P1,ηp and f > 0. Then a straightforward simple function approx-
imation based on theorem A.24(b) yields

|f |22,`p 6 |Eηp(f)|2,
i.e. we again get the first equality.

11. The projection theorem and the formula for the orthogonal
decomposition of L(ξ)

2

From the orthogonal decomposition (9.20) we see that

∀x ∈ L2, proj(x|L(ξ)
2 ) =

∞∑
p=0

proj(x|Sηp).

But, cf. (10.6), proj(x|Sηp) ∈ RangeEηp . Thus proj(x|Sηp) = Eηp(fpx), where, cf.
10.5(a), fpx ∈ L2(Rp). In the next theorem we exhibit the function fpx explicitly in
terms of x and ηp. As with CAOS measures, cf. Masani (1968, 5.10), this theorem is
best stated as a projection theorem involving Radon–Nikodym derivatives:

11.1. Projection theorem. Let x ∈ L2, p ∈ N+ & ∀∆ ∈ Dp, νx(∆) := (x, ηp(∆)).
Then

(a) νx ∈ CA(Dp,R) & νx ≺≺ `p;
(b) dνx/d`p ∈ Lsym

2 (Rp);
(c)

proj(x|Sηp) =
1
p!

∫
Rp

dνx
d`p

(t) · ηp (dt);

(d)

|proj(x|Sηp)|2 =
1
p!

∫
Rp

∣∣∣∣dνxd`p
(t)
∣∣∣∣2`p (dt).

Proof. (a) Since ηp ∈ CA(Dp,L2) and ηp ≺≺ `p, therefore (a) is obvious.
(b) Let x̂ := proj(x|Sηp). Then by (10.6), x̂ ∈ RangeEηp . Hence, cf. theorem

10.5(a),
∃f ∈ P1,ηp = L2(Rp) 3 x̂ = Eηp(f).(1)

Now, by theorem 10.3(a) and 6.19, ∀∆ ∈ Dp,
(x, ηp(∆)) = (x̂, ηp(∆)) = (Eηp(f),Eηp(χ∆)) = p!(f̃ , χ̃∆)`p = p!(f̃ , χ∆)`p .

Thus

∀∆ ∈ Dp, νx(∆) := (x, ηp(∆)) = p!
∫

∆
f̃(t)`p (dt).

It follows from the Radon–Nikodym theorem that for `p almost all t ∈ Rp,
dνx
d`p

(t) = p!f̃(t).(3)

By (1) and (3), dνx/d`p ∈ Lsym
2 (Rp). Thus (b).

(c) Combining (1), theorem 10.3(c) and (3), we see that ∃f ∈ L2(Rp) such that

x̂ = Eηp(f) = Eηp(f̃) =
1
p!
Eηp
(

dνx
d`p

)
.
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This gives (c). (d) follows from (c) and theorem 10.3(b) for symmetric f .

Since from (9.20) we have

∀x ∈ L2, proj{x|L(ξ)
2 } =

∞∑
k=0

proj(x|Sηp),

we at once get as a corollary of the projection theorem the following explicit version
of the canonical resolution of L(ξ)

2 in terms of homogeneous chaoses:

11.2. Corollary. (The orthogonal decomposition of L2) Let ∀x ∈ L2 & ∀p ∈
N+,

νpx(·) := (x, ηp(·)) on Dp & fpx :=
dνpx
d`p

, a.e. `p on Rp.

Then
(a) ∀x ∈ L2,

proj{x|L(ξ)
2 } =

∞∑
p=0

1
p!
Eηp(fpx),

the decomposition being orthogonal;
(b) in case L2 = L(ξ)

2 , we have ∀x ∈ L2,

x =
∞∑
p=0

1
p!
Eηp(fpx).

11.3. Remarks. (On Wiener’s 1958 approach) A comparison of the last expansion
with that of Wiener, namely,

F (·) = lim
n→∞

n∑
p=0

Gp(Kp, ·), (1958, (3.44) or (4.7)),(1)

where F in L2 is arbitrary, and theKp are functions in Lsym
2 (Rp), uniquely determined

by F , shows that

Gp(Kp, ·) =
1
p!

[Eηp(Kp)](·).
Indeed, to get the kernels Kp corresponding to a given F in L2, Wiener takes the RN
derivatives with respect to `p of the scalar measures obtained taking the inner product
of F with the L2-valued measures ρp(P )(·) := Gp(χP , ·), where P ∈ Pp, in accord
with our corollary 11.2 (cf. Wiener 1958, pp. 41, 42, eqs (4.9)–(4.13)). However, to
get his Gp’s, i.e. our Eηp ’s, Wiener adopted the most natural approach of starting
from the ‘multiple Wiener integrals’, cf. §1 (which we are able to introduce only
in §14 below)), and ‘ortho-normalizing’ them by taking their linear combinations
in the spirit of the Gram–Schmidt process (cf. Wiener 1958, pp. 28–36). But these
combinations get very unwieldy as p increases, and Wiener after getting G1, G2, G3,
had to assume without proof that the Gp exists for p > 3 (cf. Wiener 1958, p. 36,
last para), as we noted in §1. We will show their existence in §16.

The projection theorem also allows us to dispense with the restriction of ‘f ∈ P1,ηp ’
and with the spurious factor 2, which marred the inequalities between |f |1,ηp and
|f |2,`p given in lemma 10.4(b). We have
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11.4. Corollary. Let f ∈M(Dloc
p , B`(R)). Then

(a) (1/
√
p!)|f |2,`p 6 |f |1,ηp 6

√
p! |f |2,`p 6∞;

(b) when f is symmetric, |f |1,ηp =
√
p! |f |2,`p 6∞;

(c) in general, |f̃ |1,ηp =
√
p! |f̃ |2,`p .

Proof. (a) Let x′ ∈ (L2)′. Then there exists x ∈ L2 such that x′(·) = (·, x)L2 :=
(x, ·)L2 . It follows that

∀D ∈ Dp, x′ ◦ ηp(D) = (ηp(D), x) =: νx(D),

and hence by [MN, I, 2.32 & 2.34],∫
Rp
|f(t)| · |x′ ◦ ηp| (dt) =

∫
Rp
|f(t)| ·

∣∣∣∣dνxd`p
(t)
∣∣∣∣`p (dt) 6 |f |2,`p ·

∣∣∣∣dνxd`p

∣∣∣∣
2,`p

.(1)

But by theorem 11.1(d),∣∣∣∣dνxd`p

∣∣∣∣
2,`p

=
√
p! |proj(x|Sηp)| 6

√
p! |x|.(2)

From (1) and (2) we see that

|f |1,ηp := sup
|x′|61

∫
Rp
|f(t)| · |x′ ◦ ηp| (dt)

6 |f |2,`p · sup
|x′|61

∣∣∣∣dνxd`p

∣∣∣∣
2,`p

6 |f |2,`p ·
√
p! · 1.(3)

Now if f ∈ P1,ηp , then combining (3) with the first inequality in 10.4(b), we get
the desired inequalities. But if f 6∈ P1,ηp , then these inequalities hold trivially since
by theorem 10.4, f 6∈ L2(Rp), and |f |2,`p =∞ = |f |1,ηp . Thus (a).

(b) When f ∈ P1,ηp is symmetric we have from 10.3(b) and part (a),
√
p! |f |2,`p =

√
p! |f̃ |2,`p = |Eηp(f)| 6 |f |1,ηp 6

√
p! |f |2,`p ,

i.e. (b) holds. But it also holds trivially for f 6∈ P1,ηp . Thus (b). The result (c) of
course follows.

11.5. Remarks. That there can be no obvious equality connecting |f |1,ηp and |f |2,`p
is evident from the fact that whereas for symmetric f ∈ P1,ηp , we have by 11.4(b),

|f |1,ηp =
√
p! |f |2,`p ,

we can have |f |1,ηp = |f |2,`p for suitable non-symmetric f . To see this, take p = 2,
and f = χD, where D ∈ D2 and D‖Dφ, where Perm(2) = {I, φ}. Then it readily
follows from (A.9), (A.3), 9.13(b) and 9.13(a), that

|χD|1,η2 = sη2(D) = |η2(D)| = √`2(D) = |χD|2,`2 .

The projection theorem has other important consequences, to explore which we
need the following useful result:

11.6. Lemma. Let p, q ∈ N+ be such that q 6 p and p− q is even. Then

∀D ∈ Dp, γp(p−q)/2(D, ·) ∈ P1,ηq
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&

∀∆ ∈ Dq, (ξp(D), ηq(∆)) =
∑

φ∈Perm(q)

∫
Rq
γp(p−q)/2(D,h)χ∆(hφ)`q (dh).

Proof. Let D ∈ Dp. Then by 4.16(b) and 10.5(a), γp(p−q)/2(D, ·) ∈ L2(Rq) = P1,ηq .
Next write x := ξp(D). Then, cf. (9.11),

∀∆ ∈ Dq, νx(∆) := (x, ηq(∆)) = (ξp(D), ηq(∆)) = (ξp(D), ξq(∆\Iq1 )).(1)

Fix ∆ ∈ Dq. Then by (1) and the covariance equality, cf. 5.3 and 5.7,

νx(∆) =
[q/2]∑
k=0

Γ pq
k (D,∆\Iq1 ).(2)

Now by 5.1,

Γ pq
0 (D,∆\Iq1 ) =

∑
φ∈Perm(q)

∫
Rq
γp(p−q)/2(D,h)χ∆\Iq1 (hφ)`q (dh)

=
∑

φ∈Perm(q)

∫
Rq
γp(p−q)/2(D,h)χ∆(hφ)`q (dh),(3)

by the `q-negligibility of Iq1 . Now let k ∈ [1, [q/2]]. Since by lemma 5.2(b), Γ pq
k (D, ·)

has Iqk as a carrier and Iqk ⊆ Iq1 , it follows that Γ pq
k (D,∆\Iq1 ) = 0. Thus the summation

in (2) contains only the zeroth term, which is given in (3). Hence the result.

This lemma in conjunction with the projection theorem 11.1 gives us the following
theorem:

11.7. Theorem. Let p ∈ N+ & k ∈ [1, [p/2]]. Then, cf. (9.15),

∀D ∈ Dp, ξp,k(D) := proj(ξp(D)|Sηp−2k) =
∫
Rp−2k

γpk(D,h)ηp−2k (dh).

Proof. Let D ∈ Dp and write x := ξp(D) and x̂ := proj(x|Sηp−2k). Then, taking
q = p−2k, we change variables in the integral in 11.6, by letting t = hφ and h = tφ

−1
.

Thus ∀∆ ∈ Dp−2k,∫
Rp−2k

γpk(D,h)χ∆(hφ)`p−2k (dh) =
∫
Rp−2k

γpk(D, tφ
−1

)χ∆(t)`p−2k (dt),

since `p−2k is a permutation invariant. It follows from the last lemma that ∀∆ ∈
Dp−2k,

νx(∆) := (x, ηp−2k(∆)) =
∑

φ∈Perm(p−2k)

∫
∆
γpk(D, tφ

−1
)`p−2k (dt).

Hence by the Radon–Nikodym theorem,

dνx
d`p−2k

(t) =
∑

φ∈Perm(p−2k)

γpk(D, tφ
−1

) = (p− 2k)!γ̃pk(D, t), a.e. (`p),(1)
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where γ̃pk(D, ·) is the symmetrization of γpk(D, ·). Applying successively the projection
theorem 11.1(c) and (1), and 10.3(c), we get

x̂ =
1

(p− 2k)!

∫
Rp−2k

dνx
d`p−2k

(t)ηp−2k (dt) =
∫
Rp−2k

γ̃pk(D, t)ηp−2k (dt)

=
∫
Rp−2k

γpk(D, t)ηp−2k(t).

11.8. Remarks. The equation (1) in the last proof shows that the symmetrization of
the canonical coefficient γpk(D, ·), introduced in (4.17), is equal to 1/(p− 2k)! times
the RN derivative of the measure ν(·) := (ξp(D), ηp−2k(·)) with respect to `p−2k.

From theorem 11.7 and the orthogonal decomposition of Sξp given in (9.9), we
readily infer the following formulae for the projection of ξp(D) on Sξq :
11.9. Corollary. Let p, q ∈ N+ be such that q 6 p and p− q is even. Then, cf. 9.1,

∀D ∈ Dp, ζpq(D) := proj(ξp(D)|Sξq) =
[q/2]∑
k=0

∫
Rq−2k

γp1
2 (p−q)+k(D,h)ηq−2k (dh).

Proof. From (9.9) it follows, with an obvious notation, that

PSξq = PSηq + PSηq−2
+ · · · ,(1)

the final term being PSη1
or PSη0

according as q is odd or even. Hence,

proj(ξp(D)|Sξq) =
[q/2]∑
k=0

proj(ξp(D)|Sηq−2k)

=
[q/2]∑
k=0

∫
Rq−2k

γp(p−(q−2k))/2(D,h)ηq−2k (dh) by 11.7

=
[q/2]∑
k=0

∫
Rq−2k

γp1
2 (p−q)+k(D,h)ηq−2k (dh).

11.10. Corollary. Let p ∈ N+. Then ∀D ∈ Dp,
(a)

ξp(D) =
[p/2]∑
k=0

∫
Rp−2k

γpk(D,h)ηp−2k (dh);

(b)

ζp(D) := proj(ξp(D)|S ξp−2) =
[p/2]∑
k=1

∫
Rp−2k

γpk(D,h)ηp−2k (dh).

Proof. (a) Put q = p in 11.9 and note that ζpp(D) = ξp(D). (b) follows from (a)
on noting that the k = 0 term on the RHS is just ηp since λp0(D,h) = χD(h).
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The projection equalities enable us to answer the question raised at the tail end
of §5, as to the exact relationship between ηp+q and the product measure ηp× ηq. In
this problem a significant part is played by the fragment:

Jp+q1 := (Ip1 × Rq) ∪ (Rp × Iq1 ),(11.11)

of the diagonal skeleton Ip+q1 , cf. (4.2), and by the obvious set-theoretical triviality
concerning it, to wit:

∀p, q ∈ N+, ∀E ⊆ Rp & ∀F ⊆ Rq, (E × F )\Jp+q1 = (E\Ip1 )× (F\Iq1 ).(11.12)

11.13. Proposition. Let p, q ∈ N+, D ∈ Dp+q and Jp+q1 be as in (11.11). Then

(ηp × ηq)(D)− ηp+q(D) = ζp+q(D\Jp+q1 ).

Proof. First, let D := E×F ∈ Dp×Dq. Then using the results (9.11) and writing
J := Jp+q1 ,

(ηp × ηq)(D) := ηp(E)ηq(F ) = ξp(E\Ip1 ) · ξq(F\Iq1 ) = ξp+q{(E\Ip1 )× (F\Iq1 )}
= ξp+q{(E × F )\J} = ηp+q(D\J) + ζp+q(D\J), by (11.12).(1)

Now since J ⊆ Ip+q1 ∈ N`p+q and ηp+q ≺≺ `p+q, therefore ηp+q(D ∩ J) = 0. Hence
(1) reduces to the desired equality:

(ηp × ηq)(D) = ηp+q(D) + ζp+q(D\J).(2)

Next let ∀D ∈ Dp+q, ρ(D) := ζp+q(D\J). Then the result (2) can be restated as

ηp × ηq − ηp+q = ρ on Dp ×Dq.(3)

Since ηp = ξap and ζp = ξbp, it follows readily from 5.26 that

ηp × ηq − ηp+q & ρ are in CA(Dp+q,L2).(4)

By (3), (4) and the identity principle A.8, the equality (3) holds on δ-ring(Dp×Dq),
i.e. on Dp+q.

The decomposition of ηp × ηq yielded by the last proposition is its Lebesgue de-
composition with respect to `p+q. More precisely,

11.14. Corollary. (Lebesgue decomposition of ηp× ηq) Let p, q ∈ N+ & (ηp×
ηq)a and (ηp × ηq)b be the absolutely continuous and singular parts of ηp × ηq with
respect to `p+q, respectively. Then

(ηp × ηq)a(·) = ηp+q(·), (ηp × ηq)b(·) = ζp+q(·\Jp+q1 ).

Proof. Let ρ(·) := ζp+q(·\Jp+q1 ) on Dp+q. Then by 11.13,

ηp × ηq = ηp+q + ρ.(1)

Grant momentarily that
Ip+q1 is a carrier of ρ.(I)

Then since by 7.1(d), Ip+q1 ∈ N`p+q , it follows that ρ(·) is singular respect to `p+q. Also
by 9.12, ηp+q ≺≺ `p+q. Hence from the uniqueness of the Lebesgue decomposition,
we infer that (ηp × ηq)a = ηp+q and (ηp × ηq)b = ρ. It remains to prove (I).
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Proof of (I). Let D ∈ Dp+q. Then

ρ(D ∩ Ip+q1 ) := ζp+q[(D ∩ Ip+q1 )\Jp+q1 ] = ζp+q[D ∩ (Ip+q1 \Jp+q1 )]

= ξp+q[D ∩ (Ip+q1 \Jp+q1 ) ∩ Ip+q1 ] by (9.11)

= ξp+q[D ∩ (Ip+q1 \Jp+q1 )] = ξp+q[(D\Jp+q1 ) ∩ Ip+q1 ]

=: ζp+q[D\Jp+q1 ] =: ρ(D) by (9.11).

Thus by the definition A.2 of carrier, we have (I).

We can of course expand ζp+q(D\Jp+q1 ), the RHS in 11.13, by the projection
theorem 11.10(b); thus writing J = Jp+q1 , we get

(∗) ζp+q(D\J) =
[(p+q)/2]∑
r=1

∫
Rp+q−2r

γp+qp+q−2r(D\J, h)ηp+q−2r (dh).

But the exclusion of J on the RHS results in considerable simplification. Because
of vanishing, the upper terminus of the

∑
drops to min{p, q}, and the J can be

deleted from the integrand on the RHS. Moreover, in the evaluation of the canonical
coefficients γp+qk (D\J, h), we can ignore all partitions having a cell in either [1, p∨q] or
in [(p∨q)+1, p+q]. To show all this conveniently, we introduce the following notation
for the subclass of partitions in Π p+q

r , for which all cells {i, j} satisfy i 6 p ∨ q 6 j:
11.15. Notation. Let p, q ∈ N+ & r ∈ [1, [(p+ q)/2]]. Then

◦
Π p+q
r := {π : π ∈ Π p+q

r & ∀∆ ∈ π,min ∆ 6 p ∨ q < max ∆};

Crucial to the simplification of (∗) are the following properties of
◦

Π p+q
r , the proofs

of which are straightforward, and left to the reader.

11.16. Triviality. Let p, q, r be as in 11.15. Then
(a)

◦
Π p+q
r 6= ∅ iff r ∈ [1, p ∧ q];

(b) ∀π ∈ Π p+q
r \ ◦Π p+q

r , I(π, p+ q) ⊆ Jp+q1 .

We now assert the following lemma:

11.17. Main lemma. Let p, q ∈ R+ & q 6 p. Then ∀D ∈ Dp+q,

ζp+q(D\Jp+q1 ) =
q∑
r=1

∑
π∈
◦

Πp+q
r

∫
Rp+q−2r

λp+qπ (D,h)ηp+q−2r (dh).

Proof. Let D ∈ Dp+q. Then by 11.10(b), writing J = Jp+q1 , we have

ζp+q(D\J) =
[(p+q)/2]∑
r=1

∫
Rp+q−2r

γp+qr (D\J, h)ηp+q−2r (dh).(1)

Now grant momentarily that

(I) ∀r ∈ [1, [(p+ q)/2]] & ∀π ∈ Π p+q
r \ ◦Π p+q

r ,

λp+qπ (D\J, ·) = 0 on Rp+q−2r.
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(II) ∀r ∈ [1, q] & ∀π ∈ ◦
Π p+q
r ,

λp+qπ (D ∩ J, ·) = 0 on Rp+q−2r
∗ := Rp+q−2r\Ip+q−2r

1 cf. (4.1).

Then ∀r ∈ [1, [(p+ q)/2]] & ∀h ∈ Rp+q−2r,

γp+qr (D\J, h) :=
∑

π∈Πp+q
r

λp+qπ (D\J, h) =
∑

π∈
◦

Πp+q
r

λp+qπ (D\J, h), by (I).(2)

But, cf. 11.16(a),
◦

Π p+q
r 6= ∅, only for r 6 p ∧ q = q. Hence by (2),

[(p+q)/2]∑
r=1

γp+qr (D\J, h) =
[(p+q)/2]∑
r=1

∑
π∈
◦

Πp+q
r

γp+qπ (D\J, h) =
q∑
r=1

∑
π∈
◦

Πp+q
r

λp+qπ (D\J, h)

=
q∑
r=1

∑
π∈
◦

Πp+q
r

λp+qπ (D,h), h 6∈ Ip+q−2r
1 , by (II).

Since Ip+q−2r
1 ∈ N`p+q−2r = Nηp+q−2r , the last equality holds for ηp+q−2r almost all h.

Integrating, we get

[(p+q)/2]∑
r=1

∫
Rp+q−2r

γp+qr (D\J, h)ηp+q−2r (dh)=
q∑
r=1

∑
π∈
◦

Πp+q
r

∫
Rp+q−2r

λp+qπ (D,h)ηp+q−2r (dh).

Substituting in (1) we get the desired expression for ζp+q(D\J).
It only remains to justify (I) and (II).

Proof of (I). Let r ∈ [1, [(p + q)/2]], π ∈ Π p+q
r \ ◦Π p+q

r and h ∈ Rp+q−2r. Then by
(4.7) and 11.16(b),

Iπ(h) ⊆ I(π, p+ q) ⊆ J.
Thus (D\J) ∩ Iπ(h) = ∅, and therefore certainly

λp+qπ (D\J, h) := `k[℘π∗(∅)] = 0.

Thus (I).

Proof of (II). Let r ∈ [1, q] & π ∈ ◦
Π p+q
r . Then ∗π ⊆ [1, p] & π∗ ⊆ [p + 1, p + q].

But J is the union of all Ip+q∆̄ , where ∆̄ ⊆ [1, p] or ∆̄ ⊆ [p + 1, p + q], and where
consequently ∆̄ 6∈ π. Hence by lemma 7.3(b),

∀h ∈ Rp+q−2r
∗ , λp+qπ (D ∩ Ip+q∆̄ , h) = 0.

Since J is a finite union of such Ip+q∆̄ , and λ(·, h) is FA, it follows readily that

λp+qπ (D ∩ J, h) = 0, ∀h ∈ Rp+q−2r
∗ .

Thus (II).

Combining lemmas 11.13 and 11.17, we get the following theorem, which gives the
exact nexus between ηp×ηq and ηp+q, and which will play an important role in §§ 14
and 17.
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11.18. Theorem. Let p, q ∈ N+ & q 6 p. Then ∀D ∈ Dp+q,

(ηp × ηq)(D)− ηp+q(D) =
q∑
r=1

∑
π∈
◦

Πp+q
r

∫
Rp+q−2r

λp+qπ (D,h)ηp+q−2r (dh).

12. The π, h sectioning of functions

Before we can turn to integration with respect to the Wiener vector measure ξp, it
is necessary to consider the sectioning of functions on Rp analogous to the sectioning
of sets A ⊆ Rp accomplished in 4.10. Thus this section complements the §4 at the
functional level. It belongs to the purely scalar part of the paper, and no vector
measures appear in it. We shall adhere to the following notation:

p ∈ N+, k ∈ [0, [p/2]], π = {{i1, j1}, . . . , {ik, jk}} ∈ Π p
k ,

M ′π := [1, p]\Mπ = {m1, . . . ,mp−2k}, m1 < · · · < mp−2k,

h = (h1, h2, . . . , hp−2k) ∈ Rp−2k.

(12.1)

We wish to get from the function f on Rp to the function fpπ(·, h) on Rk, by
imitating the operations in §4 which took us from the set D ⊆ Rp to the set
Dp
π(h) ⊆ Rk. That is, we hold the m1,m2, . . . ,mp−2kth variables fixed and equal

to h1, h2, . . . , hm−2k, respectively, and in the remaining 2k variables we identify the
i1th and j1th, the i2th and j2th and so on, à la Wiener. We can formally define the
function fpπ(·, h) as follows:

12.2. Definition. Let p, k, π, h be as in (12.1). Then
(a) ∀τ ∈ Rk, θpπ,h(τ) := t, where t = (t1, . . . , tp) ∈ Rp is given by

∀α ∈ [1, k], tiα = τα = tjα & ∀β ∈ [1, p− 2k], tmβ = hβ.

(b) For all functions f on Rp, the π, h section of f is the function fpπ(·, h) on Rk
defined by

∀τ ∈ Rk, fpπ(τ, h) := f{θpπ,h(τ)}.
(c) We define the operator Jpπ,h by

∀f on Rp, (Jpπ,h)(f) := f ◦ θpπ,h = fpπ(·, h).

Note. θpπ,h(τ) is the sole member of ℘−1
π∗ (τ) ∩ Ipπ(h), which is a singleton, as the

reader can check.

In fpπ(τ, h) the components of τ and h can get thoroughly mixed as the following
examples illustrate:

Example 1. Let p = 11, k = 3, τ ∈ R3, h ∈ R5, &

π = {{3, 4}, {5, 8}, {6, 10}} ∈ Π 11
3 .

Then π∗ = {4, 8, 10} & M ′π = {1, 2, 7, 9, 11}. Hence t := θ11
π,h(τ) the sole member of

p−1
π∗ (τ) ∩ I11

π (h) has the components

t3 = t4 = τ1, t5 = t8 = τ2, t6 = t10 = τ3,
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t1 = h1, t2 = h2, t7 = h3, t9 = h4, t11 = h5.

Hence
t := θ11

π,h(τ) = (h1, h2, τ1, τ1, τ2, τ3, h3, τ2, h4, τ3, h5) ∈ R11.

For a function f on R11, f11
π (τ, h) is the value of f at this t.

Example 2. Let p = 16, k = 6,

π = {{3, 4}, {5, 8}, {6, 15}, {7, 9}, {11, 12}, {13, 14}} ∈ Π 16
6 ,

and so Mπ = [3, 9] ∪ [11, 15] ⊆ [1, 16] & M ′π = {1, 2, 10, 16}.
Then, as can be checked, ∀τ ∈ R6 & ∀h ∈ R4, ℘−1

π∗ (τ) ∩ I16
π (h) = {t}, where

t := θ16
π,h(τ) = (h1, h2, τ1, τ1, τ2, τ3, τ4, τ2, τ4, h3, τ5, τ5, τ6, τ6, τ3, h4).

Thus, f16
π (τ, h), or more fully, f16

π (τ1 · · · τ6;h1 · · ·h4), is the value of f at this point t.

However, a neat separation of the components of τ and h in fpπ(τ, h) results when
π = πk, the k standard partition defined in (6.11), namely,

πk := {{1, 2}, {3, 4} · · · {2k − 1, 2k}} ∈ Π[1,2k],

for which Mπ = [1, 2k] & M ′π = [2k + 1, p]. We obviously have

∀τ ∈ Rk & ∀h ∈ Rp−2k, fpπk(τ, h) = f(τ1, τ1, . . . , τk, τk;h).(12.3)

Further inquiry into the nature of such functional sectioning, requires a more
detailed statement of the mapping θpπ,h:

12.4. Triviality. Let p, k, π, h be as in (2.1). Then
(a) θpπ,h(·) is a (single-valued) continuous function on Rk to Rp;
(b) ∀p > 2 & ∀k ∈ [1, [p/2]], Range θpπ,h(·) ⊆ Ip1 ⊂ Rp;
(c) ∀p ∈ N+ & k = 0, Rk = {0}, π = ∅ & Rp−2k = Rp, θp∅,h(0) = h ∈ Rp, i.e.

Range θp∅,h = the singleton {h};
(d) for even p, & k = p/2, and Rp−2k = R0 = {0}, and ∀τ ∈ Rp/2, θpπ,h(τ) = t ∈ Rp,

where tiα = τα = tjα , α ∈ [1, p/2];
(e) ∀p ∈ N+ & k = 0, fpπ(τ, h) = fp∅ (0, h) = f(h);
(f) for even p, & k = p/2, fpπ(τ, 0) = f(t), where t is as in (d).

Proof. (a) is obvious from definition 12.2(a).
(b) Let p > 2, k ∈ [1, [p/2]] & π = {{i1, j1}, . . . , {ik, jk}} ∈ Π p

k . Then by 12.2(a),
∀h ∈ Rp−2k & ∀τ ∈ Rk, the iαth and jαth components of t := θpπ,h(τ) are equal for
all α ∈ [1, k]. Therefore θpπ,h(τ) ∈ Ip1 . Thus (b).

(c) Let p ∈ N+ & k = 0. Then by (1.17), π = ∅. Also, Rk = R0 = {0} &
Rp−2k = Rp. Hence h ∈ Rp−2k = Rp, and by definition 12.2(a), θp∅,h(0) = t, where
∀β ∈ [1, p], tβ = hβ, i.e. t = h. Thus (c).

(d) For even p and k = p/2, M ′π = [1, p]\Mπ = ∅, and the condition in 12.2(a) on
t := θpπ,h(τ) reduces to ∀α ∈ [1, p/2], tiα = τα = tjα . Thus (d).

(e), (f) These follow at once from (c) and (d) respectively, by virtue of the defini-
tion fpπ(τ, h) = f{θpπ,h(τ)} in 12.2(b).

The rudimentary properties of the operator Jpπ,h on the function-space R(Rp) into
R(Rk) are stated in the next result, which is a functional analogue of the homomor-
phism proposition 4.11, and its corollary 4.12:
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12.5. Proposition. Let p, k, π, h be as in (12.1). Then
(a) Jpπ,h is a linear and multiplicative on R(Rp) onto R(Rk), and preserves absolute

value; more fully, we have ∀f, g on Rp, ∀a, b ∈ R & ∀h ∈ Rp−2k,

(af + bg)pπ(·, h) = afpπ(·, h) + bgpπ(·, h) on Rk,
(f · g)pπ(·, h) = fpπ(·, h) · gpπ(·, h) on Rk,
|fpπ(·, h)| = |f |pπ(·, h) on Rk,

∀g on Rk, g ◦ ℘π∗ is on Rp & Jpπ,h(g ◦ ℘π∗) = g on Rk;
(b) Jpπ,h is monotone, and continuous in the pointwise convergence topology, i.e.

f(·) 6 g(·) on Rp =⇒ fpπ(·, h) 6 gpπ(·, h) on Rk,
fn(·)→ f(·) on Rp =⇒ (fn)pπ(·, h)→ fpπ(·, h) on Rk;

(c) Jpπ,h carries M(Bp,B1) onto M(Bk,B1);
(d) ∀A ⊆ Rp, [Jpπ,h(χA)](·) = χApπ(h)(·) = (χA)pπ(·, h) on Rk, and Jpπ,h carries

S (Bp,R) onto S (Bk,R);
(e) ∀f on Rp and ∀φ ∈ Perm(p),

(fφ
−1

)pπ(·, h) = fpπ̄(·, hφ̄) on Rk,

where π̄ is the φ distortion of π, and φ̄ ∈ Perm(p− 2k), is the (φ, π)-permutation of
[1, p− 2k], cf. definition 6.4;

(f) f ∈ R(Rp) and supp f ⊆ Rp∗ := Rp\Ip1 =⇒ f ∈ Null space of Jpπ,h.

Proof. (a), (b) From the fact that θpπ,h is a function on Rk to Rp, and

∀f ∈ R(Rp), Jpπ,h(f) := f ◦ θpπ,h,(1)

all but one of the results in (a), (b) follow at once. Only the assertion in (a) that
Range Jpπ,h = R(Rp) needs comment. Given g on Rk and π as in 12.1, we define f on
Rp by f = g ◦ ℘π∗ , i.e.

f(t) = f(t1, t2, . . . , tp) := g{℘π∗(t)} = g(tj1 , tj2 , . . . , tjk),

where, cf. 12.1, {j1, j2, . . . , jk} = π∗. Then it is easily seen that ∀h ∈ Rp−2k, fpπ(·, h) =
g(·) on Rk. Thus, Jpπ,h(f) = g.

(c) Since θpπ,h is continuous on Rk to Rp, therefore θpπ,h ∈ M(Bk,Bp). Hence if
f ∈M(Bp,B1), then from (1), Jpπ,h(f) ∈M(Bk,B1). Thus (c).

(d) As the reader can easily check,

t = θpπ,h(τ) iff {τ} = ℘π∗ [{t} ∩ Ipπ(h)].(2)

It follows from this that for any A ⊆ Rp, (χA)pπ(τ, h) = 1 iff χApπ(h)(τ) = 1, and
therefore that (χA)pπ(·, h) = χApπ(h)(·) on Rk. It so follows from the linearity of Jpπ,h
that it carries S (Bp,R) into S (Bk,R). Thus (d).

(e) Let τ ∈ Rk and s := θπ,h(τ), so that

siα = τα = sjα & smβ = hβ, α ∈ [1, k], β = [1, p− 2k].(3)

Then letting ∀n ∈ [1, p], tn := sφ−1(n), we have

(fφ
−1

)pπ(τ, h) := fφ
−1

(s) := f(sφ−1(1), . . . , sφ−1(p)) = f(t1, . . . , tp).(4)
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The arguments on the RHS form a mixture of τα’s and hβ’s. However, for α ∈ [1, k]
and β ∈ [1, p− 2k], we see from (3) that{

tφ(iα) = sφ−1{φ(iα)} = siα = τα = sjα = sφ−1{φ(jα)} = t{φ(jα)},

tφ(mβ) = sφ−1{φ(mβ)} = smβ = hβ.
(5)

Since the cells {ı̄α, ̄α} of π̄ are defined by

ı̄α = φ(iα) ∧ φ(jα), ̄α = φ(iα) ∨ φ(jα),

therefore {ı̄α, ̄α} = {φ(iα), φ(jα)}, and it follows that tı̄α and t̄α are equal to
tφ(iα) = τα, by (5). Also from the definition of φ̄, m̄β := φ{mφ̄(β)}, and hence
tm̄β = tφ{mφ̄(β)} = hφ̄(β) = (hφ̄)β, by (5). Thus we have

tı̄α = τα = t̄α & tm̄β = (hφ̄)β, α ∈ [1, k], β ∈ [1, p− 2k],

i.e. by 12.2, (t1, . . . , tp) = θp
π̄,hφ̄

(τ). Thus (4) reduces to

(fφ
−1

)pπ(τ, h) = f{θp
π̄,hφ̄

(τ)} =: fpπ̄(τ, hφ̄).

Thus (e).
(f) Let p > 2 and k ∈ [1, [p/2]]. Then by 12.4(b), Range θpπ,h(·) ⊆ Ip1 . Now let

supp f ⊆ Rp∗ := Rp\Ip1 . Then Ip1 ⊆ Null space f . Thus Range θpπ,h(·) ⊆ Null space f .
Hence Jpπ,h(f) = f ◦ θpπ,h = 0. Thus (f).

Note. We can see from 12.5(f) that the operator Jpπ,h is not one–one. The easiest
example, for p = 2, is offered by f := χR2\I on R2, where I is the diagonal of R2.

The equality in 12.5(d) establishes the nexus between functional and set-theoretical
sectioning. It reduces when A is an interval to:

∀P ∈ Pp, ∀τ ∈ Rk & ∀h ∈ Rp−2k, (χP )pπ(τ, h) = χP (π)(τ) · χPM′π (h),

by 4.10 and 4.9(b). The equality 12.5(d) immediately yields an expression for the
canonical coefficients, cf. 4.13 and 4.18, in terms of the sectioning of indicator func-
tions: 

With the notation 12.1, D ∈ Dp, B ∈ Bp & h ∈ Rp−2k, we have

(a) λpπ(D,h) = `k{Dp
π(h)} =

∫
Rk

(χD)pπ(τ, h)`k (dτ),

(b) γpk(D,h) =
∫
Rk

[ ∑
π∈Πp

k

(χD)pπ(τ, h)
]
`k (dτ),

(c) |λpπ|(B, h) := |`k|{Bp
π(h)} =

∫
Rk

(χB)pπ(τ, h)`k (dτ).

(12.6)

The equality in (12.6)(a) can of course be written:∫
Rp

(χD)(t)λpπ (dt, h) =
∫
Rk

(χD)pπ(τ, h)`k (dτ).(12.7)

12.8. Heuristics. The ground to be covered in the rest of this section is determined
largely by the following heuristic rule:

Rule. Results for Eξp(f), where f is on Rp, can be conjectured from those for
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ξp(D), for D ∈ Dp given in §§ 3–11, by replacing all ρ(C), where ρ is a measure, by
Eρ(χC), then replacing χD by f , and χC by an appropriate transform of f .

For instance, the result in 11.10(a):

ξp(D) =
[p/2]∑
k=0

∫
Rp−2k

γpk(D,h)ηp−2k (dh)

can by virtue of (12.6)(b) be transcribed as

Eξp(χD) =
[p/2]∑
k=0

∫
Rp−2k

{∫
Rk

[ ∑
π∈Πp

k

(χD)pπ(τ, h)
]
`k (dτ)

}
ηp−2k (dh),

and this suggests the general formula for f (in place of χD):

Eξp(f) =
[p/2]∑
k=0

∫
Rp−2k

{∫
Rk

[ ∑
π∈Πp

k

fpπ(τ, h)
]
`k (dτ)

}
ηp−2k (dh).(1)

This formula is valid, cf. 13.12 and 13.11(b), below. However, to demonstrate it,
we will have to appeal to a Fubini-type theorem for Markovian kernels K(D,h)
resembling γpk(D,h), which is established in Appendix B.

As far as this section is concerned, the Rule suggests a study of the `k-integrability
of ∑

π∈Πp
π

fpπ(·, h)

on Rk. This is carried out in corollary 12.10, after the preliminary proposition devoted
to individual fpπ(·, h).

12.9. Proposition. Let (i) p, k, π, h be as in (12.1), (ii) f ∈M(Bp,B1). Then
(a) ∫

Rp
|f(t)| · |λpπ| (dt, h) =

∫
Rk
|fpπ(τ, h)| · |`k| (dt);

(b) the restriction of Jpπ,h to L1,λpπ(·,h) is a linear isometry on L1,λpπ(·,h) onto L1(Rk);
(c) ∀f ∈ L1,λpπ(·,h), ∫

Rp
f(t)λpπ (dt, h) =

∫
Rk
fpπ(τ, h)`k (dt);

(d) Hp
π(f) := {h : h ∈ Rp−2k & fpπ(·, h) ∈ L1(Rk)} ∈ Bp−2k;

(e) ∀φ ∈ Perm(p), Hp
π(fφ) = {Hp

π̄(f)}ψ−1
, where π̄ ∈ Π p

k is the φ−1 distortion of
π, and ψ is the (φ−1, π) permutation of [1, p− 2k], cf. definition 6.4.

Proof. (a) Write for brevity, λ(·) = λpπ(·, h) and J = Jpπ,h. Then since by 12.5(a),
|J(f)| = J(|f |), to prove (a) we have only to show that

E|λ|(|f |) = E|`k|{J(|f |)} ∈ [0,∞].(I)

Proof of (I). For f = χA, A ∈ Bp, J(|f |) = χApπ(h) by 12.5(d), and (I) reduces
to the first equality in (12.6)(c). It follows in turn from the linearity of E|λ| and of
E|`k| ◦ J , and 12.5(d) that

∀f ∈ S (Bp,R), (I) holds.(1)
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Finally, let f ∈M(Bp,B1) and let fn ∈ S (Bp,R) be such that as n→∞,

fn(·)→ f(·) & |fn(·)| ↑ |f(·)| on Rp.(2)

Then by 12.5(b), J(|fn|) ↑ J(|f |) on Rk. Hence by (1) and two applications of the
monotone convergence theorem, we see that (I) holds for f . Thus (a).

(b) This is immediate from (a).
(c) By (12.7), (c) holds for f = χD, for D ∈ Dp, and thence for f ∈ S (Dp,R). Now

let f ∈ L1,λ. Then by (b), J(f) ∈ L1(Rk). Letting fn(·) be as in (2), we readily infer
from Lebesgue’s dominated convergence theorem that (c) holds for f . Thus (c).

(d) ∀(τ, h) ∈ Rk × Rp−2k, write θ̄(τ, h) = θpπ,h(τ). Then from 12.3(a), we see that
θ̄ is a continuous function on Rp−k to Rp. Since f ∈M(Bp,B1), it follows that

fpπ(·, ·) := (f ◦ θ̄)(·, ·) ∈M(Bp−k,B1).(3)

Hence by Tonelli’s theorem, the partial integral

F (·) :=
∫
Rk
|fpπ(τ, ·)||`k| (dτ) ∈M(Bp−2k,B[0,∞]),

where B[0,∞] is the Borel σ-algebra over R ∪ {∞}. Hence

Hp
π(f) = {h : h ∈ Rp−2k & F (h) <∞} ∈ Bp−2k.

Thus (d).
(e) Let φ ∈ Perm(p) and let π̄ and ψ be as indicated. Then taking φ−1 instead of

φ in 12.5(e), we see that ∀h ∈ Rp−2k,

h ∈ Hp
π(fφ) ⇐⇒ (fφ)pπ(·, h) ∈ L1(Rk) ⇐⇒ fpπ̄(·, hψ) ∈ L1(Rk)

⇐⇒ hψ ∈ Hp
π̄(f) ⇐⇒ h ∈ {Hp

π̄(f)}ψ−1
.

Thus (e).

The analogue of 12.9, in which the kernels λpπ(·, ·) are replaced by the kernels
γpk(·, ·) reads as follows:

12.10. Corollary. Let (i) p, k, h be as in (12.1), (ii) f ∈M(Bp,B1). Then
(a) ∫

Rp
|f(t)| · |γpk | (dt, h) =

∫
Rk

{∑
π∈Πp

k

|fpπ(τ, h)|
}
|`k| (dτ) ∈ [0,∞];

(b)

f ∈ L1,γp
k

(·,h) ⇐⇒
∑
π∈Πp

k

|fpπ(·, h)| ∈ L1(Rk);

(c) ∀f ∈ L1,γp
k

(·,h),∫
Rp
f(t)γpk (dt, h) =

∫
Rk

{∑
π∈Πp

k

fpπ(τ, h)
}
`k (dτ).

Proof. (a) Recalling that by 4.18(c),

|γpk |(·, h) :=
∑
π∈Πp

k

|λpπ|(·, h) on Bp,(1)
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we see from (1) and 12.9(a) that∫
Rp
|f(t)| · |γpk | (dt, h) =

∑
π∈Πp

k

∫
Rp
|f(t)| · |λpπ| (dt, h)

=
∑
π∈Πp

k

∫
Rk
|fpπ(τ, h)| · |`k| (dτ)

=
∫
Rk

{∑
π∈Πp

k

|fpπ(τ, h)|
}
|`k| (dτ).

Thus (a).
(b) follows once more from (a).
(c) Let f ∈ L1,γp

k
(·,h). Then by (b),

∑
π∈Πp

k
fpπ(·, h) ∈ L1(Rk). Hence by the defini-

tion 4.13 of γpk(·, ·),∫
Rp
f(t)γpk (dt, h) =

∫
Rp
f(t)

∑
π∈Πp

k

λpπ (dt, h) =
∑
π∈Πp

k

∫
Rp
f(t)λpπ (dt, h)

=
∑
π∈Πp

k

∫
Rp
fpπ(τ, h)`k (dτ), by 12.9(c)

=
∫
Rp

∑
π∈Πp

k

fpπ(τ, h)`k (dτ).

Thus (c).

The heuristically obtained equation 12.8(1) indicates that not only do we want the
sum

∑
π∈Πp

k
fpπ(·, h) to be in L1(Rk), but want the h for which this holds to form a

carrier of `p−2k, so that we can subject E`k{
∑

π∈Πp
k
fpπ(·, h)} to a further integration

with respect to `p−2k. These requirements can be conceptualized as follows:

12.11. Definition. (p− 2k marginalization) Let p ∈ N+ and k ∈ [0, [p/2]]. Then
(a) ∀f ∈M(Bp,B1) & ∀π ∈ Π p

k ,

Hp
k (f) := {h : h ∈ Rp−2k & f ∈ L1,γp

k
(·,h)}.

(b) Mp
k := {f : f ∈M(Bp,B1) & Hp

k (f) is a carrier of `p−2k}.
(c) ∀f ∈Mp

k,

Mp
k (f) := fpk (·) := χHp

k
(f)(·)

∫
Rp
f(t)γpk (dt, ·) on Rp−2k.

(d) The function fpk (·) on Rp−2k is called the p− 2k marginalization of f , and Mp
k

is called the p− 2k marginalization operator.

Our immediate objective is to show that Mp
k is a vector space closed under per-

mutations, and then to investigate the linearity and range of the operator Mp
k on

Mp
k. These rest on the following simple properties of the sets Hp

k (f), the proof of
which we leave to the reader.

12.12. Triviality. Let (i) p ∈ N+, k ∈ [0, [p/2]], (ii) f, g ∈M(Bp,B1). Then
(a) Hp

k (f) ∈ Bp−2k; for f = χD, D ∈ Dp, Hp
k (χD) = Rp−2k;
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(b)

Hp
k (f) =

⋂
π∈Πp

k

Hp
π(f) =

{
h : h ∈ Rp−2k &

∑
π∈Πp

k

fpπ(·, h) ∈ L1(Rk)
}
,

cf. 12.9(d);
(c) Hp

k (|f |) = Hp
k (f);

(d) Hp
k (cf) = Hp

k (f), c ∈ R\{0}, Hp
k (0·f) = Rp−2k;

(e) Hp
k (f) ∩Hp

k (g) ⊆ Hp
k (f + g);

(f) |f(·)| 6 |g(·)| on Rp =⇒ Hp
k (g) ⊆ Hp

k (f);
(g) Hp

0 (f) = Rp;
(h) for even p,

Hp
p/2(f) = {0} iff ∀π ∈ Π p

p/2, fpπ(·, 0) ∈ L2(Rp/2)

Hp
p/2(f) = ∅ iff ∃π ∈ Π p

p/2 3 fpπ(·, 0) 6∈ L2(Rp/2).

That the inclusion in (e) can be proper is seen on taking any f in (ii) and g = −f ,
and noting that by (d), the RHS = Rp−2k.

12.13. Theorem. (The properties of Mp
k) Let p ∈ N+ and k ∈ [0, [p/2]]. Then

(a) Mp
k is a linear submanifold of M(Bp,B1), which is closed under absolute

valuation and under the permutation group Perm(p);
(b) f ∈M(Bp,B1) & |f(·)| 6 φ(·) ∈Mp

k =⇒ f ∈Mp
k;

(c) S (Dp,R) ⊆Mp
k;

(d)

Mp
k =

{
f : f ∈M(Bp,B1) & ∃Nf ∈ Rp 3 ∀h ∈ Rp−2k\Nf ,

∑
π∈Πp

k

fpπ(·, h) ∈ L1(Rk)
}

;

(e) Mp
0 =M(Bp,B1), and for even p,

Mp
p/2 =

{
f : f ∈M(Bp,B1) &

∑
π∈Πp

p/2

fpπ(·, 0) ∈ L1(Rp/2)
}
.

Proof. (a) From 12.12(b), (c), (d), we see that if Hp
k (f), Hp

k (g) are carriers of `p−2k,
then so are Hp

k (|f |) and Hp
k (af+bg), a, b ∈ R. This shows theMp

k is linear and closed
under absolute valuation. It only remains to show that

f ∈Mp
k & φ ∈ Perm(p) =⇒ fφ ∈Mp

k.(I)

Proof of (I). Let f ∈ Mp
k, φ ∈ Perm(p), π ∈ Π p

k and let π̄ and ψ be as in 12.9(e).
Then by 12.12(b),

Hp
π̄(f) ⊇ Hp

k (f) = a carrier of `p−2k.

Thus Hp
π̄(f) is a carrier of `p−2k, and by the ψ invariance of `p−2k, so is {Hp

π̄(f)}ψ−1
=

Hp
k (fφ), by 12.9(e). This holds ∀π ∈ Π p

k . Hence, Hp
k (fφ) =

⋂
π∈Πp

k
Hp
π(fφ) is also a

carrier of `p−2k. Thus fφ ∈Mp
k and (I) and (a) are proved.

(b) If φ ∈ Mp
k, then Hp

k (φ) is a carrier. Hence, by 12.12(f), so is Hp
k (f), i.e.

f ∈Mp
k. Thus (b).

(c) First, for D ∈ Dp, by 12.12(a), Hp
k (χD) = Rp−2k, and therefore χD ∈ Mp

k. By
the linearity of Mp

k, we have (c).
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(d) A function f ∈M(Bp,B1) will be in the set on the RHS of (d) iff the set{
h : h ∈ Rp−2k &

∑
π∈Πp

k

fpπ(·, h) ∈ L1(Rk)
}

is a carrier of `p−2k. But by 12.12(b), the last set is Hp
k (f). Thus (d) just restates the

definition 12.11(b) of Mp
k. Thus (d).

(e) Let f ∈ M(Bp,B1). For k = 0, Hp
0 (f) = Rp by 12.12(g), and hence f ∈ Mp

0.
Thus, Mp

0 = M(Bp,B1). Next, for p even and k = p/2, f will be in Mp
p/2 if and

only if Hp
p/2(f) is a carrier of the measure `p−2k = `0 over R0 = {0}, i.e. if and

only if Hp
p/2(f) = {0}. But by 12.12(h), this is the case if and only if ∀π ∈ Π p

p/2,
fpp/2(·, 0) ∈ L1(Rp/2). Thus, Mp

p/2 is as stated. Thus (e).

The corresponding proposition for the marginalization operator Mp
k reads as fol-

lows:

12.14. Theorem. (The properties of Mp
k ) Let p ∈ N+ and k ∈ [0, [p/2]]. Then

(a) ∀f ∈Mp
k,

fpk (·) := [Mp
k (f)](·) = χHp

k
(f)(·)

∫
Rk

{∑
π∈Πp

k

fpπ(τ, ·)
}
`k (dτ) on Rp−2k;

(b) the operator Mp
k is on Mp

k to M(Bp−2k,B1), and Mp
k is linear and monotone,

‘mod `p−2k’, i.e. ∀f, g ∈Mp
k & ∀a, b ∈ R,

Mp
k (af + bg) = aMp

k (f) + bMp
k (g), a.e. `p−2k on Rp−2k

&
f 6 g on R =⇒Mp

k (f) 6Mp
k (g), a.e. `p−2k on Rp−2k;

(c) if ∀n ∈ N+, fn ∈Mp
k & |fn(·)| 6 F (·) ∈Mp

k, and fn(·)→ f(·) on Rp, then

Mp
k (fn)→Mp

k (f) on Hp
k (F ), as n→∞;

(d) ∀D ∈ Dp, [Mp
k (χD)](·) = (χD)pk(·) = γpk(D, ·) on Rp;

(e) ∀p > 2, ∀k ∈ [1, [p/2]], & ∀f ∈Mp
k,

supp f ⊆ Rp∗ := Rp\Ip1 =⇒ f ∈ Null space of Mp
k ;

(f) for k = 0, we have ∀f ∈ M(Bp,B1), Mp
0 (f) = fp0 = f on Rp; for even p,

∀f ∈Mp
p/2,

[Mp
p/2(f)](0) = fpp/2(0) =

∫
Rp
f(t)γpp/2 (dt, 0).

Proof. (a) Let f ∈Mp
k. Then by definition 12.11(c) and corollary 12.10(c),

Mp
k (f)(·) =: χHp

k
(f)(·)

∫
Rp
f(t)γpk (dt, ·) = χHp

k
(f)(·)

∫
Rk

∑
π∈Πp

k

fpk (τ, ·)`k (dτ).

Thus (a).
(b) Let f, g ∈Mp

k & a, b ∈ R. Then ∀h ∈ Rp−2k,

[Mp
k (af + bg)](h) = χHp

k
(af+bg)(h) · Eγp

k
(·,h)(af + bg)

= χHp
k

(af+bg)(h)[aEγp
k

(·,h)(f) + bEγp
k

(·,h)(g)].(1)
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But since f , g, and by 12.13(a), f+g are inMp
k, the sets Hk(f), Hk(g) and Hk(af+

bg) are carriers of `p−2k, and their indicator functions are equal, a.e. `p−2k. Thus for
`p−2k almost all h ∈ Rp−2k, the indicator on the RHS(1) is, cf. 12.12(d), replaceable
by the indicators of Hk(f), Hk(g), and so

RHS(1) = χHp
k

(f)aEγp
k

(·,h)(f) + χHp
k

(g)bEγp
k

(·,h)(g)

= a[Mp
k (f)](h) + b[Mp

k (g)](h).(2)

Likewise, if f 6 g on Rp, then for all h ∈ Rp−2k, Eγp
k

(·,h)(f) 6 Eγp
k

(·,h)(g), and so for
`p−2k almost all h,

χHp
k

(f)(h)Eγp
k

(·,h)(f) 6 χHp
k

(g)(h)Eγp
k

(·,h)(g).(3)

By (1), (2), (3) we have (b).
(c) By 12.13(b), all fn and f are inMp

k. Now let h ∈ Hp
k (F ). Then |fn(·)| 6 F (·) ∈

L1,γp
k

(·,h). From the datum fn → f on Rp and Lebesgue’s dominated convergence
theorem, it thus follows that

Eγp
k

(·,h)(fn)→ Eγp
k

(·,h)(f).(4)

Since h ∈ Hp
k (F ), therefore by 12.12(f), h is in Hp

k (fn) and Hp
k (f), i.e. χHp

k
(fn)(h) =

1 = χHp
k

(f). And from (4) we get Mp
k (fn)→Mp

k (fn) on Hp
k (F ). Thus (c).

(d) Let D ∈ Dp. Then by 12.12(a), Hp
k (χD) = Rp−2k. Hence by 12.11(c), ∀h ∈

Rp−2k,

Mp
k (χD)(h) := (χD)pk(h) :=

∫
Rp
χD(t)γpk (dt, h) = γpk(D,h).

Thus (d).
(e) Let p > 2, k ∈ [0, [p/2]] and f ∈Mp

k & supp f ⊆ Rp∗. Then by 12.5(f),

∀π ∈ Π p
k & ∀h ∈ Rp−2k, Jpπ,h(f) = 0.(5)

But by (a) and the definition 12.2(c) of Jpπ,h, ∀h ∈ Rp−2k,

[Mp
k (f)](h) = χHp

k
(f)(h) · E`k

{∑
π∈Πp

k

Jπ,h(f)
}

= 0, by (5).

Thus Mp
k (f) = 0. Thus (e).

(f) For k = 0, we have Mp
0 =M(Bp,B1), by 12.13(e). And by 12.12(g), Hp

0 (f) =
Rp. Hence by 12.11(c),

∀h ∈ Rp−2k, [Mp
0 (f)](h) := fp0 (h) :=

∫
Rp
f(t)γp0 (dt, h) = f(h),

since γp0(·, h) is the unit mass carried at {h}, cf. note to 4.13.
Next let p be even and f ∈Mp

p/2. Then by 12.11(b), Hp
p/2(f) is a carrier of `0, i.e.

Hp
p/2(f) = {0}. Applying 12.11(c) with k = p/2, we clearly get

fpp/2(0) = 1 ·
∫
Rp
f(t)γ (dt, 0).

Thus (f).

An important, non-obvious, property of the marginality operator Mp
k , left out in
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12.14, is that it carries Mp
k ‘essentially onto’ M(Bp−2k,B1), in the sense that given

G ∈ M(Bp−2k,B1), there exists an F ∈ Mp
k such that Mp

k (F ) = G, a.e. `p−2k on
Rp−2k. Remarkably, F can be so chosen that it works for all k. The proof of this
result, 12.17 below, hinges on the lemma 12.16, to prove which we need in turn, the
following rough analogue of 7.5.

12.15. Lemma. Let p ∈ N+ & j, k ∈ [0, [p/2]]. Then with the convention 7.4,
(a) ∀π ∈ Π p

k & ∀h ∈ Rp−2k, (R2j × Rp−2j
∗ )pπ(h) ⊆ χ[0,j](k) · Rk;

(b) ∀h ∈ Rp−2k
∗ , (R2k ×Rp−2k

∗ )pπk(h) = Rk, where πk is the k-standard partition in
Π p
k .

Proof. (a) Let π ∈ Π p
k and h ∈ Rp−2k. By convention 7.4, Rk is an admissible

version of 1 · Rk. Hence for k ∈ [0, j], taking this version, the RHS of (a) is Rk and
the inclusion in (a) holds trivially.

Next let k 6∈ [0, j], i.e. j < k. Then the RHS of (a) is 0 · Rk, i.e. is in N`k . Hence
to complete the proof we have only to show that

(R2j × Rp−2j
∗ )pπ(h) ∈ N`k .(I)

Proof of (I). Write A := R2j×Rp−2j
∗ , for brevity. Then since for π := {∆1, . . . ,∆k},

max ∆k > 2k + 1 > 2j + 1, therefore ∆k ∈ π ∩ [2j + 1, p]. Obviously

Ip∆k
:= {t : t ∈ Rp & tmin ∆k

= tmax ∆k
} ⊆ R2j × Ip−2j

1 .

Hence, cf. 4.7 and 4.3, ∀h ∈ Rp−2k,

A ∩ Ipπ(h) ⊆ A ∩ I(π, p) ⊆ A ∩ Ip∆k
= (R2j × Rp−2j

∗ ) ∩ (R2j × Ip−2j
1 )

⊆ R2j × (Rp−2j
∗ ∩ Ip−2j

1 ) = R2j × ∅ = ∅.
Thus A ∩ Ipπ(h) = ∅, and so applying ℘π∗ ,

Apπ(h) = ∅ = 0 · Rk ∈ N`k .
Thus (I). This establishes (a).

(b) Let τ = (τ1, . . . , τk) ∈ Rk and h ∈ Rp−2k
∗ . Define

t := (τ1, τ1, . . . , τk, τk, h1, . . . , hp−2k).

Then clearly τ = ℘π∗
k
(t), where t ∈ R2k × Rp−2k

∗ , and t ∈ Ipπk(h). Thus

τ ∈ ℘π∗
k
{(R2k × Rp−2k

∗ ) ∩ Ipπk(h)} =: (R2k × Rp−2k
∗ )pπk .

As this holds ∀τ ∈ Rk, we have (b).

Combining 7.5 with the last lemma, we get the lemma required in the proof of the
next theorem.

12.16. Lemma. Let (i) p ∈ N+, j, k ∈ [0, [p/2]], (ii) πj be the j-standard partition
in Π p

j and π ∈ Π p
k , and (iii)

Zj := I(πj , p) ∩ (R2j × Rp−2j
∗ ) ⊆ Rp.

Then with the convention 7.4,
(a) ∀h ∈ Rp−2k

∗ , (Zj)pπ(h) = δjkχ2π(πj) · Rk;
(b) ∀h ∈ Rp−2k

∗ , [Jpπ,h(χZj )](·) = δjkχ2π(πj), a.e. `k on Rk.
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Proof. (a) Let h ∈ Rp−2k
∗ , then by (iii), the multiplicative property of the Boolean

homomorphism in 4.11, and the results 7.5(a), we have

(Zj)pπ(h) = {I(πj , p)}pπ(h) ∩ (R2j × Rp−2j
∗ )pπ(h)(1)

= χ[0,k](j)χ2π(πj) · Rk ∩ (R2j × Rp−2j
∗ )pπ(h)

⊆ χ[0,k](j)χ2π(πj) · Rk ∩ χ[0,j](k) · Rk, by 12.15(a).

Since χ[0,k](j) · χ[0,j](k) = δjk, we get

(Zp)pπ(h) ⊆ δjk · χ2π(πj) · Rk.(2)

We see that the RHS of (2) becomes `k-essentially ∅ when j 6= k or πj 6⊆ π, in which
case (2) becomes an equality. Thus the equality in (a) holds, if j 6= k or πj 6⊆ π.

Next let k = j and πj ⊆ π, i.e. let k = j and πk = π = πj . Then the RHS of
(a) = Rk. Also by 7.5(b),

{I(πj , p)}pπ(h) = δπj ,πRk = 1 · Rk
&

(R2j × Rp−2j
∗ )pπ(h) = (R2k × R2−pk

∗ )pπk(h) = Rk, by 12.15(b).

Thus (1) reduces to (Zj)pπ(h) = Rk ∩Rk = Rk, and the equality in (a) again prevails.
This proves (a).

(b) Recalling that, by 12.2(c) and 12.5(d), ∀A ⊆ Rp,
[Jpπ,h(χA)](τ) := (χA)pπ(τ, h) = χApπ(h)(τ), τ ∈ Rk,

we see on taking A = ZJ that (b) just restates (a).

12.17. Main theorem. (‘Lebesgue essential ontoness’ of Mp
k ) Let p ∈ N+.

Then ∀k ∈ [0, [p/2]], the marginality operator Mp
k on Mp

k is `p−2k essentially onto
M(Bp−2k,B1), and uniformly for k. More precisely, let G0, G1, . . . , G[p/2] be such
that ∀k ∈ [0, [p/2]], Gk ∈M(Bp−2k,B1). Then

∃F ∈
[p/2]⋂
k=0

Mp
k 3 ∀k ∈ [0, [p/2]], Mp

k (F ) = Gk, a.e. `p−2k.

In particular (for k = 0), F = G0, a.e. `p.
Specifically, we can take F to be such that ∀t ∈ Rp,

F (t) =
[p/2]∑
j=0

ρj{℘π∗
j
(t)}Gj(t2j+1, . . . , tp)χI(πj ,p)∩(R2j×Rp−2j

∗ )(t),

where each ρj(·) can be any probability density on Rj .10

Proof. Let k ∈ [0, [p/2]], and grant momentarily that

∀h ∈ Rp−2k
∗ ,

{∑
π∈Πp

k

Jpπ,h(F )
}

(·) = ρk(·)Gk(h) on Rk.(I)

Then for `p−2k almost all h ∈ Rp−2k, LHS(I) = Gk(h)ρk(·) ∈ L1(Rk). Therefore by

10 For j = 0, ρ0 is a probability density on R0 = {0}, i.e. ρj is the function on {0} such that ρ0(0) = 1.
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12.13(d), F ∈Mp
k. By 12.14(a), ∀h ∈ Rp−2k,

[Mp
k (F )](h) = χHp

k
(F )(h)

∫
Rk

[ ∑
π∈Πp

k

Jpπ,h(F )
]
(τ)`k (dτ).(1)

Now let h ∈ Rp−2k
∗ ∩Hp

k (F ). Then by (1) and (I),

[Mp
k (F )](h) =

∫
Rk
ρk(τ)Gk(h)`k (dτ) = Gk(h)

∫
Rk
ρk(τ)`k (dτ) = Gk(h),(2)

since ρk(·) is a probability density on Rk. Now Rp−2k
∗ is a carrier of `p−2k, and

since F ∈ Mp
k, therefore by definition 12.11(b), Hp

k (F ) is a carrier of `p−2k. Thus
Rp−2k
∗ ∩Hp

k (F ) is a carrier of `p−2k, i.e. by (2), Mp
k (F ) = Gk, a.e. `p−2k, as desired.

Hence it only remains to prove (I).
Proof of (I). Define ∀j ∈ [0, [p/2]] and ∀t ∈ Rp,

gj(t) = gj(t1, . . . , tp) := Gj(t2j+1, . . . , tp),
fj(t) := ρj{℘π∗

j
(t)} · gj(t) &

Zj := I(πj , p) ∩ (R2j × Rp−2j
∗ ).

(3)

Then, cf. enunciation,

F =
[p/2]∑
j=0

fj(t)χZj (t).(4)

Let π ∈ Π p
k and h ∈ Rp−2k

∗ . Then by the linearity and multiplicativity of Jpπ,h,

Jpπ,h(F ) =
[p/2]∑
j=0

Jpπ,h(fj) · Jpπ,h(χZj ) =
[p/2]∑
j=0

Jpπ,h(fj) · δjk · χ2π(πj), by 12.16(b)

= Jpπ,h(fk) · χ2π(πk) = Jpπ,h(fk)δπk,π,

since χ2π(πk) = δπk,π, as π and πk have the same cardinality. Hence∑
π∈Πp

k

Jpπ,h(F ) =
∑
π∈Πp

k

Jpπ,h(fj) · δπk,π = Jpπk,h(fk).(5)

Now by (3) and the multiplicative property of Jpπ,h, ∀τ ∈ Rk,
[Jpπk,h(fk)](τ) = [Jpπk,h(ρk ◦ ℘π∗

k
)](τ) · [Jpπk,h(gk)](τ).

But by 12.5(a), the first factor on the RHS is ρk(τ), and the second factor is by
definition

gk{θpπk,h)(τ)} = gk(τ1, τ1, . . . , τk, τk, h1, . . . , hp−2k)

= Gk(h1, . . . , hp−2k) = Gk(h), by (3).

Thus
∀τ ∈ Rk, [Jpπk,h(fk)](τ) = ρk(τ)Gk(h).

Substituting this on the RHS of (5), we get (I).

We next attend to symmetric f , and show that the earlier results appreciably
simplify. We can sum up the situation in the following single proposition:
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12.18. Proposition. Let p ∈ N+, k ∈ [0, [p/2]] and f on Rp be symmetric. Then
(a) ∀π ∈ Π p

k , ∀ψ ∈ Perm(p− 2k), ∀h ∈ Rp−2k & ∀τ ∈ Rp, fpπ(τ, hψ) = fpπk(τ, h);
(b) ∀h ∈ Rp−2k & ∀τ ∈ Rk,∑

π∈Πp
k

fpπ(τ, h) =
(
p

2k

)
α2kf(τ1, τ1, . . . , τkτk;h);

(c) ∀π ∈ Π p
k , Hp

π(f) = Hp
πk

(f) = Hp
k (f) ∈ Bsym

p−2k;
(d) f ∈Mp

k iff Hp
πk

is a carrier of `p−2k;
(e) ∀f ∈Mp

k,

fpk (·) = χHπk (f)(·)
(
p

2k

)
α2k

∫
Rk
fpπk(τ, ·)`k (dτ);

(f) fpk is symmetric on Rp−2k.

Proof. (a) By a permutation φ ∈ Perm(p), we can unravel the mix-up of τα’s and
hβ’s in fpπ(τ, hψ) to get fpπk(τ, h). But since f is symmetric, such a permutation will
not affect f . Thus (a).

(b) This follows at once from (a), (12.3) and (1.17).
(c) Since by (a), for each h, fpπ(·, h) = fpπk(·, h), the first equality in (c) follows

at once from the definition of Hp
π(f) in 12.9(d). The second follows from this, since

Hp
k (f) is now the intersection of equal sets, cf. 12.12(b). As for its symmetry, let

ψ ∈ Perm(p− 2k). Then since fpπ(·, hψ) = fpπ(·, h), we have

h ∈ {Hp
π(f)}ψ−1 ⇐⇒ hψ ∈ Hp

π(f) ⇐⇒ fpπ(·, hψ) ∈ L1(R)

⇐⇒ fpπ(·, h) ∈ L1(R) ⇐⇒ h ∈ Hp
π(f), by (a).

Thus {Hp
π(f)}ψ−1

= Hp
π(f). Hence Hp

π(f) is symmetric.
(d) This follows at once from the definition 12.11(b) of Mp

k and the last equality
in (c).

(e) This follows from the equality 12.14(a) and the equalities in (b) and (c).
(f) Since f is symmetric on Rp, therefore

∀τ ∈ Rk, fpπk(τ, ·) = f(τ1, τ1, . . . , τkτk, ·) is symmetric on Rp−2k.

Hence ∫
Rk
fpπk(τ, ·)`k (dτ) is symmetric on Rp−2k.

But by (c), χHpπ is symmetric on Rp−2k. Hence by (e), fpk is symmetric. Thus (f).

Finally we turn to the tensor products f1 × · · · × fp of real valued functions fν on
R. They are the functional analogues of the intervals P 1× · · · ×P p in the set-theory
in §§ 3 and 4, and play an analogous basic role. We can arrive at their sectioning by
starting from 4.9(b) and applying the heuristic rule 12.8. The sectioning takes the
following simple form, cf. (4.19):

12.19. Triviality. Let (i) p, k, π and M ′π be as in (12.1) & ∆α := {iα, jα}, (ii) f ,
f1, . . . , fp be functions on R to R, (iii) τ ∈ Rk & h ∈ Rp−2k. Then

(a) ( p×
ν=1

fν

)p
π

(τ, h) =
[ k∏
α=1

fmin ∆α
(τα) · fmax ∆α

(τα)
]
·
p−2k∏
β=1

fmβ (hβ);
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(b) in particular, (f×p)pπ(τ, h) = [f×k(τ)]2 · f×(p−2k)(h), where f×p := f × f × · · ·
(p times).

Proof. Obviously,

(i1, j1, . . . , ik, jk,m1, . . . ,mp−2k) is a permutation φ of (1, 2, . . . , p).

It follows that ∀t = (t1, . . . , tp) ∈ Rp,
(ti1 , tj1 , . . . , tik , tjk , tm1 , . . . , tmp−2k) is the permutation tφ of t.

Now let F :=×p
ν=1 fν = f1 × · · · × fp. Then since multiplication is commutative, it

follows that ∀t = (t1, . . . , tp) ∈ Rp,

F (t) :=
p∏
ν=1

fν(tν) =
[ k∏
α=1

fiα(tiα)fjα(tjα)
]
·
m−2k∏
β=1

fmβ (tmβ ).(1)

Now let τ = (τ, . . . , τk) ∈ Rk & h = (h1, . . . , hp−2k) ∈ Rp−2k. Then by definition
12.2,

F pπ (τ, h) := F (t), where t = θpπ,h(τ),(2)
i.e. where t is given by

∀α ∈ [1, k], tiα = τα = τjα & ∀β ∈ [1, p− 2k], tmβ = hβ.(3)

Substituting from (3) into (1), and appealing to (2), we get the equality in (a).
(b) This follows from (a) on setting f1 = · · · = fp = f .

We next address the question as to when the tensor product f1 × · · · × fp of
functions f1, . . . , fp on R to R is inMp,k, cf. definition 12.11(b). We have the follow-
ing elementary lemma, where (b) and (c) are the analogues of (4.20) in which linear
combinations of tensor products replace the simple functions (i.e. replace linear com-
binations of indicators):

12.20. Lemma. Let (i) p ∈ N+ & k ∈ [0, [p/2]], (ii) f1, . . . , fp ∈ L2(R). Then
(a)

p×
ν=1

fν ∈Mp
k;

(b) ∀π ∈ Π p
k & ∀h ∈ Rp−2k,∫

Rk

( p×
ν=1

fν

)p
π

(τ, h)`k (dτ) =
∏
∆∈π

(fmin ∆, fmax ∆)L2(R) ·
(×
m∈M ′π

fm

)
(h);

(c) ∀h ∈ Rp−2k,( p×
ν=1

fν

)p
k

(h) =
∑
π∈Πp

k

{∏
∆∈π

(fmin ∆, fmax ∆)L2(R) ·
(×
m∈M ′π

fm

)
(h)
}
.

(d) in particular, for even p,( p×
ν=1

fν

)p
p/2

(0) =
∑

π∈Π[1,p]

{∏
∆∈π

(fmin ∆, fmax ∆)L2(R)

}
.
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Proof. (a) Since F := ×p
ν=1 fν ∈ M(Bp,B1), therefore by definition 12.11(b),

we need only show that Hp
k (F ) is a carrier of `p−2k. We shall show in fact that

Hp
k (F ) = Rp−2k, i.e.

∀π ∈ Π p
k & ∀h ∈ Rp−2k,

( p×
ν=1

fν

)p
π

(·, h) ∈ L1(Rk).(I)

Proof of (I). Let π and M ′π be as in 12.1. Then by 12.19(a), ∀h ∈ Rp−2k,∫
Rk

∣∣∣∣(
p×
ν=1

fν

)p
π

(τ, h)
∣∣∣∣`k (dτ)

=
∫
Rk

∣∣∣∣ k∏
α=1

fmin ∆α
(τα) · fmax ∆α

(τα)
∣∣∣∣`k (dτ) ·

p−2k∏
β=1

|fmβ (hβ)|

=
k∏

α=1

∫
Rk
|fmin ∆α

(τα) · fmax ∆α
(τα)|`1 (dτα) ·

p−2k∏
β=1

|fmβ (hβ)|

6
k∏

α=1

|fmin ∆α
|2,`1 |fmax ∆α

|2,`1 ·
p−2k∏
β=1

|fmβ (hβ)| <∞,

by the Schwartz inequality and (ii). Thus (I) holds, and (a) is proved.
(b) Let π ∈ Π p

k & h ∈ Rp−2k. Then by 12.19(a),∫
Rk

( p×
ν=1

fν

)p
π

(τ, h)`k (dτ)

=
∫
Rk

[ k∏
α=1

fmin ∆α
(τα) · fmax ∆α

(τα)
]
·
p−2k∏
β=1

fmβ (hβ) · `k (dτ)

=
k∏

α=1

∫
Rk
fmin ∆α

(τα) · fmax ∆α
(τα)`1 (dτα) ·

p−2k∏
β=1

fmβ (hβ)

=
k∏

α=1

(fmin ∆α
, fmax ∆α

)L2(R) ·
(p−2k×
β=1

fmβ

)
(h) = RHS(b).

Thus (b).
(c) This follows from (b) and by 12.10(c). The result (d) is an obvious special case.

An important special case of the last result, obtained on setting f1 = · · · = fp = f ,
is the following:

12.21. Corollary. Let p ∈ N+, k ∈ [0, [p/2]] & f ∈ L2(R). Then
(a) f×p ∈Mp

k;
(b) ∀π ∈ Π p

k & ∀h ∈ Rp−2k,∫
Rk

(f×p)pπ(τ, h)`k (dτ) = |f |2k2,`1 · f×(p−2k)(h);
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(c) ∀h ∈ Rp−2k, (f×p)pk(h) =
(
p
2k

)
α2k|f |2k2,`1 · f×(p−2k)(h).

13. Integrability and integration with respect to the measure ξp

The greater complexity of the covariance structure of the measures ξp in relation
to the measures ηp is reflected in a greater complexity of the classes P1,ξp and the
operators Eξp , vis-à-vis P1,ηp and Eηp discussed in §10. We abide by the definitions
and results in (A.9)–(A.26), where now ρ is to be ξp.

For the relationship between the spaces P1,ξp and P1,ηp note that from the inequal-
ities

∀f ∈M(Bp, B`(R)), |f |1,ηp 6 |f |1,ξp & |f |1,ζp 6 |f |1,ξp ,(13.1)

which by (A.9) are simple consequences of 9.13(h), it follows at once that

P1,ξp ⊆ P1,ηp = L2(Rp) (cf. 10.5) & P1,ξp ⊆ P1,ζp .(13.2)

But the inclusions in (13.2) are proper for p > 2, as the following example shows:

13.3. Example. Let p ∈ N+ be even. Then χIp
p/2
∈ L2(Rp)\P1,ξp .

Proof. Since Ipp/2 ⊆ Ip1 ∈ N`p , cf. 7.1(a) and (4.14), so obviously f := χIp
p/2
∈

L2(Rp). Next, let ∀n ∈ N+, Dn be the part of Ipp/2 inside the box [0, n]p, i.e. Dn :=
[0, n] ∩ Ipp/2. Then Dn ∈ Dp and cf. (A.13)

|f |1,ξp = sξp(I
p
p/2) > sξp(Dn) > |ξp(Dn)|L2 .(1)

But by (8.7) and (8.8),

ξp(Dn) = EP{ξp([0, n]p)} · 1(·) = αp/2n
p/2 · 1(·).

Hence |ξp(Dn)| = αp/2n
p/2. Thus by (1), |f |1,ξp =∞, i.e. f 6∈ P1,ξp .

The specific part of L2(Rp) that constitutes P1,ξp , emerges from the next lemma,
in which ξp,k(·) := proj(ξp(·)|Sηp−2k) on Dp, cf. (9.15):

13.4. Lemma. Let p ∈ N+ & k ∈ [0, [p/2]]. Then ∀f ∈M(Bp,B1),

1
[p/2]

[p/2]−1∑
k=0

|f |1,ξp,k 6 |f |1,ξp 6
[p/2]∑
k=0

|f |1,ξp,k .

Proof. We first assert that ∀x′ ∈ (L2)′ & ∀A ∈ Bp,

1
[p/2]

[p/2]−1∑
k=0

|x′ ◦ ξp,k|(A) 6 |x′ ◦ ξp|(A) 6
[p/2]∑
k=0

|x′ ◦ ξp,k|(A).(I)

Proof of (I). Let x′ ∈ (L2)′ & A ∈ Bp. Then, since by (9.10), ξp =
∑[p/2]

k=0 ξp,k,
therefore

∀D ∈ Dp, x′ ◦ ξp(D) =
[p/2]∑
k=0

x′ ◦ ξp,k(D),
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whence follows the second inequality in (I), namely,

|x′ ◦ ξp|(A) 6
[p/2]∑
k=0

|x′ ◦ ξp,k|(A).(1)

Next from 9.16(b), for 0 6 k < [p/2],

|x′ ◦ ξp,k|(A) = |x′ ◦ ξp|{A ∩ (Ipk\Ipk+1)} 6 |x′ ◦ ξp|(A).(2)

Thus
[p/2]−1∑
k=0

|x′ ◦ ξp,k|(A) 6 [p/2] · |x′ ◦ ξp|(A),

and division by [p/2] yields the first inequality in (I). Thus (I).
Now let f ∈M(Bp,B1). Then by (2), ∀k ∈ [0, [p/2]− 1],∫

Rp
|f(t)| · |x′ ◦ ξp,k| (dt) 6

∫
Rp
|f(t)| · |x′ ◦ ξp| (dt)

6
[p/2]∑
j=0

∫
Rp
|f(t)| · |x′ ◦ ξp,j | (dt), by (1).

Taking the sup for |x′| 6 1 in all three terms, we get

∀k ∈ [0, [p/2]− 1], |f |1,ξp,k 6 |f |1,ξp 6
[p/2]∑
k=0

|f |1,ξp,k .

Summing over k in the first of these inequalities and dividing by [p/2], we get

1
[p/2]

[p/2]−1∑
k=0

|f |1,ξp,k 6 |f |1,ξp <
[p/2]∑
k=0

|f |1,ξp,k .

It follows at once from the last lemma, and from (9.10) and the linearity of Eρ(f)
as an operator acting on the measure ρ, the inclusion RangeEξp,k ⊆ Sξp,k , and the
orthogonality of the Sξp,k that

∀p ∈ N+, P1,ξp =
[p/2]⋂
k=0

P1,ξp,k

&

∀f ∈ P1,ξp , Eξp(f) =
[p/2]∑
k=0

Eξp,k(f), Eξp,j (f) ⊥ Eξp,k(f), j 6= k.

(13.5)

These equalities reveal the centrality of the measure ξp,k, and bring up the ques-
tion as to what are the classes P1,ξp,k and the operators Eξp,k—questions, which are
interesting by virtue of the formula

∀D ∈ Dp, ξp,k(D) =
∫
Rp−2k

γpk(D,h)ηp−2k (dh),
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established in 11.7. These questions are answered in theorem 13.10 and corollary
13.12, on the basis of the results in Appendix B.

We first note that since by 6.1 and 9.16(c), ξp and ξp,k are invariant under the
group on Bp induced by Perm(p), we infer from lemma A.35 that:

∀p ∈ N+ & ∀k ∈ [0, [p/2]],
f ∈ P1,ξp =⇒ ∀φ ∈ Perm(p), fφ ∈ P1,ξp & Eξp(fφ) = Eξp(f),
f ∈ P1,ξp,k =⇒ ∀φ ∈ Perm(p), fφ ∈ P1,ξp,k & Eξp,k(fφ) = Eξp,k(f).

(13.6)

Moreover (˜ denoting symmetrization), (13.6) entails that{
f ∈ P1,ξp =⇒ f̃ ∈ P1,ξp & Eξp(f̃) = Eξp(f),
f ∈ P1,ξp,k =⇒ f̃ ∈ P1,ξp,k & Eξp,k(f̃) = Eξp,k(f).

(13.7)

The example cited in the note to 10.3 shows that f̃ ∈ P1,ξp 6=⇒ f ∈ P1,ξp . Con-
sequently in studying P1,ξp,k and Eξp,k , we may take f to be symmetric only with
caution.

We must now note that by B.9, the measure σ := ηp−2k satisfies the restraint (B.2)
on letting H = L2 and q = p − 2k, and that the canonical coefficients γpk(·, ·) have
all the attributes of the Markovian type kernels listed in (B.3). More fully,

13.8. Lemma. Let p ∈ N+ & k ∈ [0, [p/2]]. Then K(·, ·) := γpk(·, ·) satisfies (B.3),
i.e.

(a) γpk(·, ·) is a function on Dp × Rp−2k to R0+;
(b) ∀h ∈ Rp−2k, γpk(·, h) ∈ CA(Dp,R0+);
(c) ∀D ∈ Dp, γpk(D, ·) ∈ P1,ηp−2k ;
(d) ∀D ∈ Dsym

p , γpk(D, ·) is symmetric on Rp−2k.

Proof. (a)–(c) are clear from 4.16(a), (b); and (d) restates 6.10(b).

Furthermore, by theorem 11.7, the measure ρ(·), determined by the kernel γpk(·, ·)
is ξp,k, which by 9.16(c) is permutation invariant, i.e. we have ∀k ∈ [0, [p/2]] & ∀D ∈ Dp, ξp,k(D) =

∫
Rp−2k

γpk(D,h)ηp−2k (dh)

& ∀φ ∈ Perm(p), ξp,k(Dφ) = ξp,k(D).
(13.9)

Thus all the premises imposed on the kernel K(·, ·) and the measure ρ in main
theorem B.8 are satisfied (q now being p− 2k), and from this theorem we conclude
(recalling the definition 12.11 of Mp

k and fpk ):

13.10. Main theorem. (on P1,ξp,k & Eξp,k) Let p ∈ N+ & k ∈ [0, [p/2]]. Then
(a) P1,ξp,k = {f : f ∈Mp

k & |f |pk(·) ∈ P1,ηp−2k};
(b) ∀f ∈ P1,ξp,k ,

Eξp,k(f) =
∫
Rp−2k

{∫
Rp
f(t)γpk (dt, h)

}
ηp−2k (dh) = Eηp−2k(fpk );

(c) ∀f ∈ Psym
1,ξp,k , ∃Ñ ∈ N sym

p−2k such that fpk (·) is symmetric on Rp−2k\N .

Theorem 12.10(c) allows us to express the condition for ξp,k integrability as well as
the ξp,k integral, in terms of the Lebesgue measure `k, in the following more usable
forms:
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13.11. Theorem. Let p ∈ N+ & k ∈ [0, [p/2]]. Then
(a) f ∈ P1,ξp,k iff f ∈M(Bp,B1) & ∀π ∈ Π p

k ,∫
Rp−2k

[ ∫
Rk
|fpπ(τ, h)|`k (dτ)

]2

`p−2k (dh) <∞.

(b) ∀f ∈ P1,ξp,k ,

Eξp,k(f) =
∫
Rp−2k

[ ∫
Rk

{ ∑
π∈Πp

k

fpπ(t, h)
}
`k (dt)

]
ηp−2k (dh);

(c) ∀f ∈ Psym
1,ξp,k ,

Eξp,k(f) =
(
p

2k

)
α2k

∫
Rp−2k

{∫
Rk
fpπk(τ, h)`k (dt)

}
ηp−2k (dh).

Proof. (a) By 12.14(a) and the last equality in 12.5(a),

|f |pk(·) =
∑
π∈Πp

k

∫
Rk
|fpπ(τ, ·)|`k (dτ), a.e. `p−2k, on Rp−2k.

It follows readily that |f |pk ∈ L2(Rp−2k) iff each integral on the RHS is in L2(Rp−2k),
i.e. iff the condition in (a) holds. Since L2(Rp−2k) = P1,ηp−2k , cf. 10.5(a) we have (a).

(b) On the RHS of 13.10(b), replace
∫
Rk f(t)γpk (dt, h) by the expression in 12.10(c).

This yields (b).
(c) We repeat the steps in (b) except for using 12.18(e) instead of 12.10(c).

Finally, reverting to (13.5), recalling as noted after (9.15), that P1,ξp,0 = P1,ηp =
L2(Rp), and appealing to theorems 13.10 and 13.11, we can state the condition for
ξp-integrability and the value of the ξp-integral as follows:

13.12. Main theorem. (on P1,ξp & Eξp) Let p ∈ N+. Then f ∈ P1,ξp iff

f ∈
[p/2]⋂
k=1

Mp
k & ∀k ∈ [0, [p/2]], |f |pk ∈ P1,ηp−2k ,

i.e. ∀k ∈ [0, [p/2]], f ∈Mp,k & ∀π ∈ Π p
k ,∫

Rp−2k

{∫
Rk
|fpπ(τ, h)|`k (dτ)

}2

`p−2k (dh) <∞.

Moreover, we have the orthogonal expansion:

∀f ∈ P1,ξp , Eξp(f) =
[p/2]∑
k=0

Eηp−2k(fpk ).

Note. As the reader can easily check, the condition in 13.12 corresponding to k = 0
is just ∫

Rp
|f(h)|`p (dh) <∞, i.e. f ∈ L2(Rp);
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and for k = p/2 when p is even, it is that

∀π ∈ Π[1,p],

∫
Rp/2
|f{θpπ,0(τ)}|`p/2 (dτ) <∞.

For symmetric f , the condition for membership in P1,ξp simplifies appreciably. We
have

13.13. Corollary. (Symmetric f) Let p ∈ N+ and f on Rp be symmetric. Then
(a) f ∈ P1,ξp iff f ∈ ⋂[p/2]

k=1 Mp
k, and ∀k ∈ [0, [p/2]],∫

Rp−2k

{∫
Rk
|f(τ1, τ1, . . . , τkτk;h)|`k (dτ)

}2

`p−2k (dh) <∞;

(b) ∀f ∈ Psym
1,ξp

Eξp(f) =
[p/2]∑
k=0

(
p

2k

)
α2k

∫
Rp−2k

{∫
Rk
fpπk(τ, h)`k (dτ)

}
ηp−2k (dh).

Proof. Part (a) is clear from 13.12, 12.18(a) and (12.3). Part (b) is clear from 13.12
and 12.18(e).

The covariances of the integrals Eξp(f) are readily had from the equality in 13.12:

13.14. Proposition. (Covariances of the Eξp(f)) Let (i) p, q ∈ N0+, (ii) f ∈
P1,ξp , g ∈ P1,ξq . Then

(a) if q < p and p− q is even, we have

(Eξp(f),Eξq(g)) =
[q/2]∑
k=0

(q − 2k)!
∫
Rp−2k

f̃p1
2 (p−q)+k(h)g̃pk(h)`q−2k (dh);

(b) if p+ q is odd, we have Eξp(f) ⊥ Eξq(g);
(c)

|Eξp(f)|2 =
[p/2]∑
k=0

(p− 2k)!
∫
Rp−2k

|f̃pk(h)|2`p−2k (dh);

(d) Null space (Eξp) = {f : f ∈ P1,ξπ & ∀k ∈ [0, p/2], f̃pk(·) = 0, a.e. `p−2k}.
Proof. (a) The proof is routine. By appealing to the first result in (13.7), we can

deal with (Eξp(f̃),Eηq(f̃)). We compute this, using the last equality 13.12. We then
note that by 12.13(a), f̃pj , f̃

q
k are symmetric and we simplify further by means of

10.3(a).
(b) is obvious since by (A.29) and 8.6, RangeEξp ⊆ Sξp ⊥ Sξq ⊇ RangeEξq .
(c) We take q = p and g = f in (a).
(d) This follows at once from (c).

The equality in 13.14(a) corresponds to the covariance equality for sets given in
5.3. For on letting f = χD and g = χE in 12.18, we get the equality in 5.3 on noting
the formula in 5.2(c).

For the expectation of the integrals Eξp(f), we have:

13.15. Proposition. Let p ∈ N0+ & f ∈ P1,ξp . Then
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(a) if p is odd, EP{Eξp(f)} = 0;
(b) if p is even, EP{Eξp(f)} = fpp/2(0).

Proof. (a) Let p ∈ N0+. Then by (A.33),

EP{Eξp(f)} =
∫
Rp
f(t) · (EP ◦ ξp) (dt).(1)

If p is odd, then by 5.9(b), EP ◦ ξp = 0 on Dp, and we get (a).
(b) If p is even, then by 5.9(a), (EP ◦ ξp)(D) = γpp/2(D, 0), and therefore

RHS(1) =
∫
Rp
f(t)γpp/2 (dt, 0) = fpp/2(0), by 12.14(f).

The integral analogue of the projection theorem 11.7 reads as follows:

13.16. Proposition. Let p ∈ N+ & k ∈ [0, [p/2]]. Then
(a) ∀f ∈ P1,ξp , Proj(Eξp(f)|Sηp−2k) = Eξp,k(f) = Eηp−2k(fpk );
(b) ∀f ∈ P1,ξp , Proj(Eξp(f)|Sηp) = Eηp(f).

Proof. (a) Let T be the projection operator on L2 onto Sηp−2k . Then ∀D ∈ Dp,
T{ξp(D)} = ξpk(D), by (9.15), i.e. T ◦ ξp = ξpk. Hence for f ∈ P1,ξp , by (A.32),

LHS(a) = T{Eξp(f)} = ET◦ξp(f) = Eξpk(f) = Eηp−2k(fpk ) by 13.10(b).

Thus (a).
(b) This follows on taking k = 0 and on noting that fp0 = f , cf. 12.14(f).

Our next goal in this section is to show that the range of the integral operator
Eξp is closed in L2, and therefore by (A.29) equals the closed subspace spanned by
the values of the measure ξp itself, and to draw from it a result on liftings. In full
analogy with the equality (10.6) for ηp, we have:

13.17. Theorem. ∀p ∈ N+, RangeEξp = Sξp is closed.

Proof. Obviously RangeEξp ⊆ Sξp . Hence we have only to show the reverse inclu-
sion, i.e. that

∀x ∈ Sξp , ∃F ∈ P1,ξp 3 Eξp(F ) = x.(I)
Proof of (I). Let x ∈ Sξp . Then since by (9.9),

Sξp =
[p/2]∑
k=0

Sηp−2k , Sηi ⊥ Sηj , i 6= j,

therefore

∀k ∈ [0, [p/2]], ∃1xk ∈ Sηp−2k 3
[p/2]∑
k=0

xk = x.(1)

By (10.6),

∀k ∈ [0, [p/2]], ∃1Gk ∈ L2(Rp−2k) 3 Eηp−2k(Gk) = xk.(2)

Now by the main theorem 12.17 we know that

∃F ∈
[p/2]⋂
k=1

Mp
k 3 ∀k ∈ [0, [p/2]], F pk = Gk, a.e. `p−2k on Rp−2k.
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Since Gk ∈ L2(Rp−2k), each F pk ∈ L2(Rp−2k). Thus by theorem 13.12, F ∈ P1,ξp .
Furthermore, by theorem 13.12,

Eξp(F ) =
[p/2]∑
k=0

Eηp−2k(F pk ) =
[p/2]∑
k=0

Eηp−2k(Gk) = x, by (1) and (2).

The last theorem allows us to settle the lifting problem alluded to in §1h. This
problem is to show that each equivalence [f ] in L2(Rp) has a representative F that
possesses the so-called kth trace in L2(Rp−2k) for each k ∈ [0, [p/2]]. A preliminary
result is the following:

13.18. Corollary. (On lifting from L2(Rp) to P1,ξp) Let ∀x ∈ L2 & ∀p ∈ N+,
(i) fpx be the Radon–Nikodym derivative defined in corollary 11.2, and (ii) [fpx ] be
the equivalence class in Lsym

2 (Rp) containing fpx , cf. 11.1(b). Then

∀x ∈ L2 & ∀p ∈ N0+, [fpx ] ∩ P1,ξp 6= ∅,
i.e. for each x ∈ L2, [fpx ] has a representative φx in P1,ξp .

Proof. Let x ∈ L2, p ∈ N+ & x̂ := proj(x|Sξp). Since by 13.17, Sξp = RangeEξp ,
therefore ∃Fx ∈ P1,ξp such that x̂ = Eξp(Fx). Now since Sηp ⊆ Sξp , therefore

proj(x|Sηp) = proj(x̂|Sηp) = proj{Eξp(Fx)|Sηp) = Eηp(Fx), by 13.16(b).(1)

Since by theorem 11.1(c), LHS(1) = (1/p!)Eηp(fpx) = Eηp((1/p!)fpx), we see from (1)
that

Eηp((1/p!)fpx − Fx) = 0, i.e. (1/p!)fpx − Fx ∈ Null space (Eηp).
Since by 11.1(b), fpx ∈ Lsym

2 (Rp), therefore by theorem 10.5(b),

0 = ((1/p!)fpx − Fx)˜ = (1/p!)f̃px − F̃ x = (1/p!)fpx − F̃ x.
Hence φpx := p!F̃ x = fpx in L2(Rp). And since Fx is in P1,ξp , so by (13.7) is F̃ x and
therefore so is φpx. Thus φpx ∈ P1,ξp ∩ [fpx ].

13.19. Remarks. (The Feynman integral) With the notation of the last corollary
the function φpx := p!F̃ x, being in P1,ξp , satisfies the conditions of 13.12, i.e. ∀k ∈
[0, [p/2]], (φpx)pk exists and is in P1,ηp−2k . Moreover, since φpx is symmetric, therefore
by proposition 12.18(e), for `p−2k almost all h in Rp−2k,

(φpx)pk(h) =
(
p

2k

)
α2k

∫
Rk
φpx(τ1, τ1, . . . , τkτk;h)`k (dτ).

The last term, apart from a well-determined constant factor, matches formula (1.3)
in Johnson & Kallianpur (1993). The latter formula can thus be secured by the
following recipe: Project the given x in L2 on the subspace Sξp generated by the pth
Wiener chaotic measure ξp. This, by theorem 13.17, yields an integrand Fx ∈ P1,ξp .
Take the symmetrization of this Fx and multiply it by p!.

By hindsight, however, we can be even more explicit. We can avoid all reference to
vector measures, and rely instead entirely on theorem 12.17, i.e. on scalar concepts
emanating from the diagonal skeletons. To get from the equivalence class [f ], where
f ∈ L2(Rp), a representative F for which the ‘kth trace’ is a given Gk ∈ L2(Rp−2k),
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∀k ∈ [1, [p/2]], take the function, F given by

F (t) =
[p/2]∑
j=0

ρj{℘π∗
k
(t)}Gj(t2j+1, . . . , tp)χI(p,πj)∩(R2j×Rp−2k

∗ )(t), ∀t ∈ Rp,

where each ρj is any probability density on Rj , and G0 = f .

Finally, towards establishing contact with Ito’s integral, we ask for what kind of
f is Eξp(f) = Eηp(f)? An answer is provided by the next lemma.

13.20. Lemma. Let p ∈ N+ & f ∈ L2(Rp). Then

∀f ∈ P1,ξp such that supp f ⊆ Rp∗ := Rp\Ip1 , Eξp(f) = Eηp(f).

Proof. Case 1. Let p = 1. Then ξ1 = η1, and the result holds trivially.
Case 2. Let p > 2, f ∈ P1,ξp and supp f ⊆ Rp∗. Then by 12.14(e), ∀k ∈ [1, [p/2]],

0 = Mp
k (f) = fpk . Hence by theorem 13.12,

Eξp(f) =
[p/2]∑
k=0

Eηp−2k(fpk ) = Eηp(f
p
0 ) = Eηp(f),

cf. theorem 12.14(f).

The Ito integral. Let p ∈ N+. Ito (1951) calls a function f in S(Pp,R) special iff f
vanishes on the diagonal skeleton Ip1 . Ito shows that the class Σp, of special functions
is a linear manifold everywhere dense in L2(R). Ito’s definition of the integral Ip
reads simply:

∀f ∈ Σp, Ip(f) := Eξp(f).11

It is shown that Ip is a linear operator on Σp into L2 and that (1/
√
p!)Ip is a

contraction, i.e.
∀f ∈ Σp, |Ip(f)| 6 √p! |f |2,`p .

This allows Ito to define Ip(f) for any f ∈ L2(Rp), by taking fn ∈ Σp such that
|f − fn|2,`p → 0, and letting

Ip(f) := lim
n→∞

Ip(fn).

We contend that Ip is just Eηp :
13.21. Proposition. ∀f ∈ L2(Rp), Ip(f) = Eηp(f).

Proof. Let f ∈ Σp. Then by definition, Ip(f) = Eξp(f). But by lemma 13.20, the
last term is Eηp(f), since supp f ⊆ Rp∗. Thus

∀f ∈ Σp, Ip(f) = Eηp(f).(1)

Now let f ∈ L2(Rp) and fn ∈ Σp, be such that |f−fn|2,`p → 0. Then by the definition
of Ip, and (1),

Ip(f) := lim
n→∞

Ip(fn) = lim
n→∞

Eηp(fn).(2)

But by 10.3(b), |Eηp(f)−Eηp(fn)| 6 √p! |f − fn|2,`p → 0. Hence the last limit in (2)
is Eηp(f). Thus Ip(f) = Eηp(f).

11 The bar under I is inserted to avoid possible confusion with the diagonal skeleton.
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14. The Fubini theorem for tensor products of functions
on Rp and on Rq

Let C, D be δ-rings over some sets S and T , and ρ ∈ CA(C,L2), σ ∈ CA(D,L2).
As remarked in 5.24, ρ× σ 6∈ CA{δ-ring(C × D),L2}, in general.

Now let f ∈ M(Cloc,B1), g ∈ M(Dloc,B1). Then the (tensor) product f × g on
S × T defined by

(f × g)(s, t) := f(s) · g(t), (s, t) ∈ S × T,
is in M[{δ-ring(C × D)}loc,B1]. Even granting that we have

ρ× σ ∈ CA(δ-ring(C × D),L2),(1)

it is not clear that in general

f ∈ P1,ρ & g ∈ P1,σ =⇒ f × g ∈ P1,ρ×g.(2)

The difficulty lies in the absence of a nexus between the Pettis norms |f × g|1,ρ×σ
and |f |1,ρ, |g|1,σ, cf. (A.9). This absence stems from the fact that for X1, X2, Y ∈ L2,
we know of no way to bring about an inequality such as

|(X1 ·X2, Y )| 6 |(X1, Y1)| · |(X2, Y2)|
for suitable Y1, Y2 in L2. Nor is there any convenient relationship between the norms
|X1 ·X2|L2 and |X1|L2 , |X2|L2 , that offers an alternative approach.

However, once these two difficult points are conceded, and (1), (2) are taken as
premises, the Fubini equality Eρ×σ(f × g) = Eρ(f) · Eσ(g) is provable by standard
considerations, as shown in the next proposition:

14.1. Proposition. (A Fubini theorem for L2-valued measures) Let
(i) C, D be δ-rings over spaces S, T & D̂ = δ-ring(C × D),
(ii) ρ ∈ CA(C,L2), σ ∈ CA(D,L2) be such that ρ× σ ∈ CA(D̂,L2),
(iii) f ∈ P1,ρ, g ∈ P1,σ be such that f × g ∈ P1,ρ×σ.
Then

Eρ×σ(f × g) = Eρ(f) · Eσ(g).

Proof. Case 1. Let f ∈ S (C,R) & g ∈ S (D,R), cf. (A.12). Then obviously f × g ∈
S (D̂,R), and an elementary computation shows that

Eρ×σ(f × g) = Eρ(f) · Eσ(g).(1)

Case 2. Let f ∈ P1,ρ & g ∈ P1,σ be such that f × g ∈ P1,ρ×σ. Then by the
approximation theorem A.24,

∃(fn)∞1 ∈ S (C,R) 3 |fn(·)| 6 |f(·)|, |fn − f |1,ρ → 0,
&
∃N1 ∈ Nρ 3 ∀x ∈ Ω\N1, fn(x)→ f(x);

(2)


∃(gn)∞1 ∈ S (D,R) 3 |gn(·)| 6 |g(·)|, |gn − g|1,σ → 0,
&
∃N2 ∈ Nσ 3 ∀y ∈ Λ\N2, gn(y)→ g(y).

(3)
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It follows from (2) and (3), cf. A.26, that

Eρ(f) := lim
n→∞

Eρ(fn) & Eσ(g) = lim
n→∞

Eσ(gn).(4)

We now assert that
Eρ×σ(f × g) = lim

n→∞
Eρ×σ(fn × gn).(I)

Proof of (I). By (2) and (3),

∀(s, t) ∈ S × T, |(fn × gn)(s, t)| = |fn(s)| · |gn(t)|
6 |f(s)| · |g(t)| = |(f × g)(s, t)|,

i.e. by (iii) and (A.11)(b),

∀n ∈ N+, |(fn × gn)(·, ·)| 6 |(f × g)(·, ·)| ∈ P1,ρ×σ.(5)

Also from (2) and (3)

∀(s, t) ∈ (S\N1)× (T\N2),

(fn × gn)(s, t) = fn(s)gn(t)→ f(s)g(t) = (f × g)(s, t).(6)

Letting N := (N1 × T ) ∪ (S ×N2), we know (cf. A.44) that

(S\N1)× (T\N2) = (S × T )\N & N ∈ Nρ×σ.
Hence from (6)

∀(s, t) ∈ (S × T )\N, (fn × gn)(s, t)→ (f × g)(s, t).(7)

It follows from (5), (7) and the dominated convergence theorem A.28 that

lim
n→∞

Eρ×σ(fn × gn) = Eρ×σ(f × g).(8)

Thus (I).
Let us denote by Fn, F , Gn, G, Φn, Φ the random variables

Eρ(fn), Eρ(f), Eσ(gn), Eσ(g), Eρ×σ(fn × gn), Eρ×σ(f × g)

in L2 := L2(Ω,A,P;R). Then by case 1,

Φn = Fn ·Gn,(9)

and by (4) and (I),

Fn → F, Gn → G & Φn → Φ in L2.

By three applications of the subsequence principle, we arrive at a P-negligible set
N ⊆ Ω, and a sequence (nk)∞k=1 in N+ such that{

∀ω ∈ Ω\N,
Fnk(ω)→ F (ω), Gnk(ω)→ G(ω) & Φnk(ω)→ Φ(ω) as k →∞.(10)

Thus by (10), ∀ω ∈ Ω\N ,

F (ω)G(ω) = lim
k→∞

Fnk(ω) lim
k→∞

Gnk(ω) = lim
k→∞

[Fnk(ω)Gnk(ω)]

= lim
k→∞

Φnk(ω), by (9)

= Φ(ω), by (10).
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Thus Φ = F ·G a.e. P on Ω, and hence in L2. More fully,

Eρ×σ(f × g) = Eρ(f) · Eσ(g), a.e. P on Ω.

Our first goal in this section is to show that the measures ξp and ξq, for which, as
we already know from 5.14, ξp × ξq ∈ CA(Dp+q,L2), are again non-pathological in
that the implication

(∗) f ∈ P1,ξp & g ∈ P1,ξq =⇒ f × g ∈ P1,ξp+q ,

prevails, and that therefore by 14.1, for f ∈ P1,ξp & g ∈ P1,ξq , we have both

f × g ∈ P1,ξp+q & Eξp+q(f × g) = Eξp(f) · Eξq(g).

Our second goal will be to find the more difficult connection between the integrations
Eηp×ηq and Eηp+q . The reader willing to take (∗), i.e. 14.10 below, on faith can turn
to 14.11.

To turn to the implication (∗), our ignorance of the connection between the three
Pettis norms cited at the outset, and between the three L2 norms |X · Y |L2 , |X|L2 ,
|Y |L2 , precludes us from proving that f×g ∈ P1,ξp+q by a limiting argument starting
with simple functions. We are obliged to fall back on the integrability conditions
given in 13.12 It is convenient to restate this theorem for a function F on Rp+q, in
a format which in the special case F = f × g, with f ∈ P1,ξp , g ∈ P1,ξq , will reveal
the conditions that f × g must be shown to satisfy in order that f × g ∈ P1,ξp+q .

14.2. Lemma. Let p, q ∈ N+. Then F ∈ P1,ξp+q iff

(α) F ∈ L2(Rp+q)

&
(β) ∀r ∈ [1, [ 1

2(p+ q)]] & ∀π ∈ Π p+q
r ,∫

Rp+q−2r

{∫
Rr
|F p+qπ (τ, h)|`r (dτ)

}2

`p+q−2r (dh) <∞.

The condition (α) is easily verified for the tensor product f×g. For if f ∈ P1,ξp , and
g ∈ P1,ξq , then, cf. (13.2), f ∈ L2(Rp), g ∈ L2(Rq), and therefore f × g ∈ L2(Rp+q);
thus

f ∈ P1,ξp & g ∈ P1,ξq =⇒ f × g ∈ L2(Rp+q).(14.3)
As for the condition (β), we have to attend to the sectioning F p+qπ (τ, h) for F := f×g,
with f on Rp to R, g on Rq to R, and where π ∈ Π p+q

r , τ ∈ Rr and h ∈ Rp+q−2r. We
claim that there always is a factorization

(#) (f × g)p+qπ (τ, h) = fpπ1
(τ1, ĥ1) · gqπ2

(τ2, ĥ2).

This is proved in 14.9(a), which in turn leads to the integral factorization in 14.9(b).
This gives us enough control over the integrals in 14.2(β) to allow us to deduce (∗)
in 14.10.

To find out what the far from obvious π1, π2, τ1, ĥ1, τ2, ĥ2 in (#) might be, it is
worth considering an example:

14.4. Example. Let p = 11, q = 9, r = 7, and so p+ q − 2r = 6,

π = {{1, 8}, {2, 16}, {4, 6}, {5, 20}, {9, 10}, {14, 19}, {17, 18}} ∈ Π 20
7 ;(1)

Phil. Trans. R. Soc. Lond. A (1997)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


Homogeneous chaos 1207

say π = {∆1, . . . ,∆7}, ∆α = {iα, jα}, α ∈ [1, 7]. Then

M ′π := [1, 20]\Mπ = {3, 7, 11, 12, 13, 15}.(2)

Let
τ = (τ1, . . . , τ7) ∈ R7 & h = (h1, . . . , h6) ∈ R6.

Then
θ20
π,h(τ) = (t1, . . . , t11; t12, . . . , t20),(3)

where by 12.2(a), ∀α ∈ [1, 7], tiα = τα = tjα & ∀β ∈ [1, 6], tmβ = hβ. It follows that

t1 = t8 = τ1, t2 = t16 = τ2, t3 = h1, t4 = t6 = τ3,

t5 = t20 = τ4, t7 = h2, t9 = t10 = τ5, t11 = h3,

t12 = h4, t13 = h5, t14 = t19 = τ6, t15 = h6, t17 = t18 = τ7.

Thus

θ20
π,h(τ) = (τ1, τ2, h1, τ3, τ4, τ3, h2, τ1, τ5, τ5, h3;h4, h5, τ6, τ6, τ2, τ7, τ7, τ6, τ4).(4)

Now let π1 comprise the cells of π that fall in [1, 11], i.e. let

π1 := {{1, 8}, {4, 6}, (9, 10}} ∈ Π 11
3 .(5)

Then, as the reader can check

(τ1, τ2, h1, τ3, τ4, τ3, h2, τ1, τ5, τ5, h3) = θ11
π1,ĥ1(τ1),(6)

where
τ1 := (τ1, τ3, τ5) ∈ R3,(7)

these being the only τ ’s that appear twice in the first 11 terms of the sequence (4),
and

ĥ1 := (τ2, h1, τ4, h2, h3) ∈ R5 = R11−2·3,(8)
these being the terms still left among the first 11 terms of the sequence (4), after the
removal of all the τ ’s in (7).

Next, take the cells of π that fall in [12, 20], namely, {14, 19}, {17, 18}, and displace
them by −11, and so obtain the partition

(5′) π2 := {{3, 8}, {6, 7}} ∈ Π 9
2 .

Then, as the reader can check,

(6′) (h4, h5, τ6, τ2, τ7, τ7, τ6, τ4) = θ9
π2,ĥ2(τ2),

where

(7′) τ2 = (τ6, τ7) ∈ R2,

these being the only τ ’s that appear twice in the last nine terms of the sequence (4),
and

(8′) ĥ2 := (h4, h5, h6, τ2, τ4) ∈ R5 = R9−2·2,

these being the terms still left among the last nine terms of the sequence (4), after
the removal of all the τ ’s in (7′). On combining (4), (6) and (6′), we see that

θ20
π,h(τ) = (θ11

π1,ĥ1(τ1), θ11
π2,ĥ2(τ2)).(9)
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Now let f , g be functions on R11 and R9. Then

(f × g)20
π (τ, h) := (f × g){θ20

π,h(h)} by 12.2(b)

= f{θ11
π1,ĥ1

(τ1)} · g{θ11
π2,ĥ2

(τ2)}, by (9)

=: f11
π1

(τ1, ĥ1) · g9
π2

(τ2, ĥ2), by 12.2(b).

�
It seems clear from an inspection of example 14.4, that the recipes in it for procur-

ing the ingredients π1, τ1, ĥ1 and π2, τ2, ĥ2 needed for the factorization, should work
in general. This leads us to define these ingredients by means of the recipes them-
selves:

14.5. Definition. (a) Let (i) p, q ∈ N+, q 6 p & r ∈ [0, [1
2(p + q)]], (ii) π =

{∆1, . . . ,∆r} ∈ Π p+q
r , M ′π := [1, p+ q]\Mπ,

∀α ∈ [1, r], ∆α := {iα, jα}, i1 < · · · < ir & iα < jα,

Then we define

π0 := {∆ : ∆ ∈ π & min ∆ 6 p < max ∆},
π1 := {∆ : ∆ ∈ π & ∆ ⊆ [1, p]}, M ′π1

:= [1, p]\Mπ1 ,

π2 := {∆− {p} : ∆ ∈ π & ∆ ⊆ [p+ 1, p+ q]}, M ′π2
:= [1, q]\Mπ2 ,

A1 := {α : α ∈ [1, r] & jα 6 p},
A0 := {α : α ∈ [1, r] & iα 6 p < jα},
A2 := {α : α ∈ [1, r] & p+ 1 6 iα},
ki := #(πi), i = 0, 1, 2; p′ := #(M ′π ∩ [1, p]);

q′ := #(M ′π ∩ [p+ 1, p+ q]).

(b) With (i), (ii) as in (a), let (iii) τ = (τ1, . . . , τr) ∈ Rr. Then we define

τ i := (τα : α ∈ Ai), i = 0, 1, 2.

(c) With (i), (ii), (iii) as in (a), (b), let (iv) h = (h1, . . . , hp+q−2r) ∈ Rp+q−2k. Then
we define h1 := (h1, . . . , hp′), h2 := (hp′+1, . . . , hp′+q′).

(d) With (i)–(iv) as in (a), (b), (c), let

θp+qπ,h (τ) := (t1, . . . , tp; tp+1, . . . , tp+q).

Then we define

ĥ1 := the subsequence of (t1, . . . , tp) obtained by deleting from it

all terms equal to τα, for α ∈ A1;

ĥ2 := the subsequence of (tp+1, . . . , tp+q) obtained by deleting from it

all terms equal to τα, for α ∈ A2.

We shall call π0, π1, π2 and τ0, τ1, τ2 and ĥ1, ĥ2 the p, q canonical components of
π and τ and h, respectively.

The following connections obviously obtain:

14.6. Triviality. With the notation 14.5, we have
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(a) π1 = {∆α : α ∈ A1} ∈ Π p
k1

, π2 = {∆α − {p} : α ∈ A2} ∈ Π q
k2

,

π = π1 ∪ π0 ∪ π2 + {p}, π0, π1, π2 + {p} are ‖;
(b) r = k0 + k1 + k2, k1 ∈ [0, [p/2]], k2 ∈ [0, [q/2]];
(c) h = (h1, h2), p+ q − 2r = p′ + q′;
(d) the vector ĥi is made up of the components of τ0 & hi, i = 1, 2;
(e) p− 2k1 = k0 + p′, q − 2k2 = k0 + q′.

Guided by the example 14.4, we now assert

14.7. Decomposition lemma. Let
(i) p, q ∈ N+, q 6 p, r ∈ [1, [(p+ q)/2]], π ∈ Π p+q

r , τ ∈ Rr & h ∈ Rp+q−2r;
(ii) π0, π1, π2, τ

0, τ1, τ2 & ĥ1, ĥ2 be the p, q canonical components of π, τ and h,
and ki = #(πi), for i = 0, 1, 2.

Then
θp+qπ,h (τ) := (θpπ1,ĥ1(τ1), θqπ2,ĥ2(τ2)).

Proof. Let
θp+qπ,h (τ) := (t1, . . . , tp; tp+1, . . . , tp+q).(1)

Then we have only to show that

(I) (t1, . . . , tp) = θpπ1,ĥ1(τ1); (II) (tp+1, . . . , tp+q) = θqπ2,ĥ2(τ2).

Proof of (I). Let
θpπ1,ĥ1(τ1) = (s1, . . . , sp);(2)

M ′π := [1, p+ q]\Mπ = {m1, . . . ,mp+q−2r}, m1 < · · · < mp+q−2r;(3)

M ′π1
:= [1, p]\Mπ1 = {n1, . . . , np−2k1}, n1 < · · · < np−2k1 .(4)

Then by 12.2 and (1), (2),

∀α ∈ [1, r], tiα = τα = tjα & ∀β ∈ [1, p+ q − 2r], tmβ = hβ;(5)

∀α ∈ A1, siα = τα = sjα & ∀γ ∈ [1, p− 2k1], snγ = ĥ1
γ .(6)

Now let µ ∈ Mπ1 . Then, cf. 14.6(a), µ = iα or µ = jα, for some α ∈ A1. Since
α ∈ A1, therefore by (6), siα = τα = sjα , sµ = τα. But by 14.5(a), A1 ⊆ [1, r], and so
α ∈ [1, r], and therefore by (5), tiα = τα = tjα , i.e. tµ = τα. Thus sµ and tµ are equal
to the same τα. We thus see that

∀µ ∈Mπ1 , sµ = tµ.(7)

Next, consider any µ ∈ [1, p]\Mπ1 . By (4), µ ∈ {n1, . . . , np−2k1}. Now the sequence
(tn1 , . . . , tnp−2k1

) is precisely the subsequence of (t1, . . . , tp) that we get on deleting
from it, all terms equal to τα, for some α ∈ A1. But this subsequence is by definition,
cf. 14.5(d), precisely the sequence ĥ1. Thus

(tn1 , . . . , tnp−2k1
) = ĥ1 = (ĥ1

1, . . . , ĥ
1
p−2k1

)

= (sn1 , . . . , snp−2k1
), by (6).(8)

Since µ ∈ {n1, . . . , np−2k1}, therefore µ = some nβ. Thus by (8), sµ = snβ = tnβ =
tµ. This shows that

∀µ ∈ [1, p]\Mπ1 , sµ = tµ.(9)
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Combining (7) and (9), we see that ∀µ ∈ [1, p], sµ = tµ. Thus

(t1, . . . , tp) = (s1, . . . , sp) = θpπ1,ĥ1(τ1), by (2).

Thus (I).
Proof of (II). This is obtained by an obvious adaptation of the proof of (I).

The decomposition lemma yields readily the factorization (#) (see 14.9(a) below).
However, the usability of this factorization rests on the structure of the vectors ĥ1,
ĥ2 revealed in 14.6(d). To exhibit the particular mix of τ0 and hi that constitute the
vector ĥi, where i = 1, 2, we shall adopt the following notation:

[τ0, h1] := ĥ1, [τ0, h2] := ĥ2.(14.8)

This notation is needed in part (b) of the next lemma.

14.9. Factorization lemma. Let (i) and (ii) be as in 14.7. Then
(a) ∀ functions f , g on Rp and Rq, respectively,

(f × g)p+qπ (τ, h) = fpπ1
(τ1, ĥ1) · gqπ2

(τ2, ĥ2);

(b) ∀f ∈M(Bp,B1) & ∀g ∈M(Bq,B1),∫
Rr
|(f × g)p+qπ (τ, h)|`r (dτ) =

∫
Rk0

{[∫
Rk1

|fpπ1
(τ1, [τ0, h1])|`k1 (dτ1)

]
·
[ ∫

Rk2

|gqπ2
(τ2, [τ0, h2])|`k2 (dτ2)

]}
`k0 (dτ0)

∈ [0,∞].

Proof. (a) Let f , g be on Rp and Rq. Then by 12.2, the decomposition lemma and
the definition of the tensor product

(f × g)p+qπ (τ, h) := (f × g){θp+qπ,h (τ)} = (f × g)(θpπ1,ĥ1(τ1), θqπ2,ĥ2(τ2))

= f{θpπ1,ĥ1(τ̂1)} · g{θqπ2,ĥ2(τ̂2)} =: fpπ1
(τ̂1, ĥ1) · gqπ2

(τ̂2, ĥ2).

Thus (a).
(b) Write F := f × g. Since, cf. 14.5(b), each component τα of τ , α ∈ [1, r], falls

among the components of τ 0, τ1, τ2, therefore |F p+qπ (·, h)| is equal to a function
G(·, ·, ·;h):

∀τ ∈ Rr, |F p+qπ (τ, h)| = G(τ1, τ2, τ0;h).
Since r = k0 + k1 + k2, therefore by Tonelli’s theorem,

(1)
∫
Rr
|F p+qπ (τ, h)|`r (dτ) =

∫
Rk0

[ ∫
Rk1+k2

G(τ1, τ2, τ0;h)`k1+k2{d(τ1, τ2}
]
`k0 (dτ0).

Factoring G as per the equality in (a), and applying Tonelli’s theorem, the integrand
on the RHS(1) is seen to be∫

Rk1+k2

|fpπ1
(τ1, ĥ1) · gqπ2

(τ2, ĥ2)|`k1+k2{d(τ 1, τ2)}

=
∫
Rk1

{∫
Rk2

|fpπ1
(τ1, ĥ

1)| · |gqπ2
(τ2, ĥ2)|`k2 (dτ2)

}
`k1 (dτ2)

=
∫
Rk1

|fpπ1
(τ1, ĥ

1)|`k1 (dτ1) ·
∫
Rk2

|gqπ2
(τ2, ĥ

2)|`k2 (dτ2).
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Substituting this expression on the RHS of (1), and substituting for ĥ1, ĥ2 from
(14.8), we get (b).

The last lemma allows us to show that the criteria for F to be in P1,ξp+q , given in
14.2, are fulfilled when F = f ×g, and f ∈ P1,ξp and g ∈ P1,ξq , and thereby to prove:

14.10. Main theorem. Let p, q ∈ N+, f ∈ P1,ξp and g ∈ P1,ξq . Then
(a) f × g ∈ P1,ξp+q and (b) Eξp+q(f × g) = Eξp(f) · Eξq(g).

Proof. (a) By (14.3), F := f × g ∈ L2(Rp+q). Hence we have only to verify the
condition in 14.2(β). Let r ∈ [1, [(p+ q)/2]]. We have only to show that

∀π ∈ Π p+q
r , J :=

∫
Rp+q−2r

[ ∫
Rr
|F p+qπ (τ, h)|`r (dτ)

]2

`p+q−2r (dh) <∞.

Fix π ∈ Π p+q
r and let π0, πi, π2 be the p, q canonical components of π. Then π1 ∈ Π p

k1
,

π2 ∈ Π p
k2

. Since f ∈ P1,ξp and g ∈ P1,ξq , we know from 14.2(β) that
J1 :=

∫
Rp−2k1

[ ∫
Rk1

|fpπ1
(τ1, ĥ1)|`k1 (dτ1)

]2

`p−2k1 (dĥ1) <∞,

J2 :=
∫
Rp−2k2

[ ∫
Rk2 |gqπ2

(τ2, ĥ2)|`k2 (dτ2)
]2

`q−2k2 (dĥ2) <∞.
(1)

We shall complete the proof by showing that

J 6 J1 · J2 and so J <∞.(I)

Proof of (I). Let τ0 ∈ Rk0 and [τ0, hi] be as in 14.8. It then follows from 14.9(b)
that

Φ(h) :=
∫
Rr
|F pπ (τ, h)|`r (dτ) =

∫
Rr
|(f × g)pπ(τ, h)|`r (dτ)(2)

=
∫
Rk0

{[∫
Rk1

|fpπ1
(τ1, [τ0, h1])|`k1 (dτ1)

]
·
[ ∫

Rk2

|gqπ2
(τ2, [τ0, h2])|`k2 (dτ2)

]}
· `k0 (dτ0).

Squaring both sides, and using the Schwartz inequality on the RHS, we get

Φ(h)2 6 ψ1(h1) · ψ2(h2),(3)

where

ψ1(h1) :=
∫
Rk0

[ ∫
Rk1

|fpπ1
(τ1, [τ0, h1])|`k1 (dτ1)

]2

`k0 (dτ0),(4)

ψ2(h2) :=
∫
Rk0

[ ∫
Rk2

|gqπ2
(τ2, [τ0, h2])|`k2 (dτ2)

]2

`k0 (dτ0).(5)

Noting that p+ q − 2r = p′ + q′, cf. 14.6(c), and using (3), we get

J :=
∫
Rp+q−2r

Φ(h)2`p+q−2r (dh) 6
∫
Rp′+q′

ψ1(h1) · ψ2(h2)`p′+q′{d(h1, h2)},
i.e.

J 6
∫
Rp′

ψ1(h1)`p′(dh1) ·
∫
Rq′

ψ2(h2)`q′ (dh2).(6)

Phil. Trans. R. Soc. Lond. A (1997)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


1212 P. R. Masani

But by (4),∫
Rp′

ψ1(h1)`p′(dh1)

:=
∫
Rp′

{∫
Rk0

[ ∫
Rk1

|fpπ1
(τ1, [τ0, h1])|`k1 (dτ1)

]2

`k0 (dτ0)
}
`p′(dh1)

=
∫
Rp′+k0

[ ∫
Rk1

|fpπ1
(τ1, [τ0, h1])|`k1 (dτ1)

]2

`k0+p′{d(τ0, h1)}.(7)

Now [τ 0, h1] is the specific mix-up of the components of τ0 and h1 that yields ĥ1 ∈
Rp−2k1 . Thus ∃φ ∈ Perm(p−2k1), which unmixes these components, i.e. is such that

(ĥ1)φ = [τ0, h1]φ = (τ0, h
1).

Since Lebesgue integration is permutation invariant, it follows that we can replace
d(τ 0, h1) by dĥ1 in the last integral in (7), and recalling that p′ + k0 = p − 2k1, cf.
14.6(e), conclude that∫

Rp′
ψ1(h1)`p′ (dh′) =

∫
Rp−2k1

[ ∫
Rk1

|fpπ1
(τ1, ĥ1)|`k1 (dτ1)

]2

`p−2k1 (dĥ1) =: J1.

We can similarly show that∫
Rq−q′

ψ2(h2)`q−q′ (dh2) = J2.

Thus (6) reduces to the inequality (I). This establishes (a).
(b) follows from (a) and proposition 14.1.

From the last result we readily get, by iteration, the generalization to any finite
number of factors:

14.11. Corollary. Let r, p1, . . . , pr ∈ N+ & ∀i ∈ [1, r], fi ∈ P1,ξpi . Then

f1 × · · · × fr ∈ P1,ξp1+···+pr & Eξp1+···+pr (f1 × · · · × fr) =
r∏
i=1

Eξpi (fi).

A simple corollary of corollary 14.11 is the result that Wiener did not quite prove
(cf. Wiener 1938, eqn (80)):

14.12. Corollary. (Wiener’s result) Let p ∈ N+, and f ∈ M(Bp,B1) be such
that

∀t ∈ (t1, . . . , tp) ∈ Rp, |f(t)| 6
p∏
i=1

|fi(ti)|,

where f1, . . . , fp ∈ L2(R). Then f ∈ P1,ξp .

Proof. By 14.11, f1 × · · · × fp ∈ P1,ξp . Since ∀t ∈ Rp, |f(t)| 6 |(f1 × · · · × fp)(t)|,
therefore by the domination principle (A.18), f ∈ P1,ξp .

Another interesting corollary of 14.11 is the fact that for f in P1,ξp , the integral,
Eξp(f), as a random variable, possesses finite raw moments of all orders:

14.13. Corollary. ∀p ∈ N+, ∀f ∈ P1,ξp & ∀r ∈ N+, EP(|Eξp(f)|r) < ∞, i.e. the
absolute moments of all orders of the random variable Eξp(f) are finite.
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Proof. We first observe that since the Lr spaces involve a probability measure,
therefore

L2 ⊆ L1.(1)
Now let p ∈ N+, f ∈ P1,ξp , F := Eξp(f) on Ω, and r ∈ N+. Define ∀i ∈ [1, r],

pi = p and fi = f . Then by 14.11,

f×r ∈ P1,ξpr & F (·)r = [{Eξp(f)}(·)]r = [Eξpr(f×r)](·) on Ω.(2)

Taking the absolute value, and integrating over Ω, we get

EP(|Eξp(f)(·)|r) = EP(|{Eξpr(f×r)}(·)|).(3)

But since by (2), f×r ∈ P1,ξpr , therefore Eξpr(f×r) ∈ L2. By (1), Eξpr(f×r) ∈ L1.
Hence EP(|Eξpr(f×r)|) <∞, i.e. by (3), EP(|Eξp(f)(·)|r) <∞.

14.14. Remarks. (The general Fubini theorem) Let p, q ∈ N+ & F on Rp+q be of the
form

F :=
r∑

k=1

ak(fk × gk), where fk ∈ P1,ξp & gk ∈ P1,ξq .(1)

Then since P1,ξp+q is a Banach space and Eξp+q a linear operator on P1,ξp+q to L2, it
follows readily from theorem 4.10 that

Eξp+q(F ) =
r∑

k=1

akEξp(f) · Eξq(g),

i.e. Eξp+q(F ) is a sum of products of integral factors. This result can be extended to
all F on Rp+q, which are limits of sums of the type (1).

However, even for the simplest case, p = q = 1, the general Fubini theorem, to
wit, ∀F ∈ P1,ξ2 ,

Eξ2(F ) =
∫
R

{∫
R
F (s, t)ξ1 (ds)

}
ξ1 (dt)(2)

goes beyond the scope of the integration theory used in this paper. This is because
the integrand in (2), namely, the partial integral G(·) defined on R by

∀t ∈ R, G(t) =
∫
R
F (s, t)ξ1 (ds) ∈ L2,

is not scalar-valued but random-variable-valued, and consequently

RHS(2) =
∫
R
G(t)ξ1 (dt)

is undefined. The same difficulty afflicts the general slicing equality

ξp+q(D) =
∫
Rq
ξp(Dt)ξq (dt).

We turn next to our second goal, namely, the integrability and integration with
respect to the product measure ηp × ηq. Since by proposition 11.13,

ηp × ηq = ηp+q + ρ,

where ρ(·) := ζp+q(·\Jp+q1 ) is given by lemma 11.17, we first attend to integrability
and integration with respect to the measure ρ.
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14.15. Lemma. Let (i) q ∈ N+ & p 6 q, and (with the notation 11.15),
(ii) ∀D ∈ Dp+q,

ρ(D) =
q∑
r=1

∫
Rp+q−2r

[ ∑
π∈
◦

Πp+q
r

λp+qπ (D,h)
]
ηp+q−2r (dh).

Then
(a) F ∈ P1,ρ iff F ∈M(Bp+q,B1) &

q∑
r=1

∑
π∈
◦

Πp+q
r

∫
Rp+q−2r

[ ∫
Rr
|F p+qπ (τ, h)|`r (dt)

]2

`p+q−2r (dh) <∞;

(b) ∀F ∈ P1,ρ,

Eρ(F ) =
q∑
r=1

∑
π∈
◦

Πp+q
r

∫
Rp+q−2r

[ ∫
Rr
F p+qπ (τ, h)`r (dt)

]
ηp+q−2r (dh).

Proof. (a) Let D ∈ Dp+q. Then by (ii),

ρ(D) =
q∑
r=1

∫
Rp+q−2r

Kr(D,h)ηp+q−2r (dh),(1)

where ∀r ∈ [1, q], ∀h ∈ Rp+q−2r & ∀D ∈ Dp+q,
Kr(D,h) :=

∑
π∈
◦

Πp+q
r

λp+qπ (D,h).(2)

But, as is easily checked, with H = L2 and σ = ηq, Kr(·, ·) satisfies the conditions in
(B.3) on Dp+q × Rp+q−2r. Hence on letting

∀D ∈ Dp+q, ρr(D) :=
∫
Rp+q−2r

Kr(D,h)ηp+q−2r (dh) ∈ Sηp+q−2r ,(3)

it follows from lemma B.5(a) that each ρr ∈ CA(Dp+q,L2). Let F ∈ M(Bp+q,B1).
Then by theorem B.8(a),

F ∈ P1,ρr ⇐⇒
∫
Rp+q−2r

{∫
Rp+q
|F (t)|Kr (dt, h)

}2

`p+q−2r (dh) <∞.(4)

But by (2),∫
Rp+q
|F (t)|Kr (dt, h) =

∑
π∈
◦

Πp+q
r

∫
Rp+q
|F (t)|λp+qπ (dt, h)

=
∑

π∈
◦

Πp+q
r

∫
Rr
|F p+qπ (τ, h)|`r (dτ), by 12.9(c).

Thus (4) can be rewritten

F ∈ P1,ρr ⇐⇒
∫
Rp+q−2r

[ ∑
π∈
◦

Πp+q
r

∫
Rr
|F p+qπ (τ, h)|`r (dτ)

]2

`p+q−2r (dh) <∞.(5)
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Now from the trivial equalities for positive functions απ(·) on Rn,∑
π∈Π

απ(h)2 6
{∑
π∈Π

απ(h)
}2

6 #(Π ) ·
∑
π∈Π

απ(h)2,

it follows, since #(Π ) <∞, that∫
Rn

{∑
π∈Π

απ(h)
}2

`n (dh) <∞ ⇐⇒
∑
π∈Π

∫
Rn
απ(h)2`n (dh) <∞.

Applying this with n = p+ q − 2r, Π =
◦

Π p+q
r and

απ(h) =
∫
Rr
|F p+qπ (τ, h)|`r (dτ),

we infer from (5) that

F ∈ P1,ρr ⇐⇒
∑

π∈
◦

Πp+q
r

∫
Rp+q−2r

[ ∫
Rr
|F p+qπ (τ, h)|`r (dτ)

]2

`p+q−2r (dh) <∞.(6)

Now by (1) and (3),

ρ =
q∑
r=1

ρr, and for r 6= r′, Sρr ⊆ Sηp+q−2r ⊥ Sηp+q−2r′ ⊇ Sρr′ .(7)

It follows from A.31(b) that

F ∈ P1,ρ ⇐⇒ ∀r ∈ [1, q], F ∈ P1,ρr .

Hence by (6)

F ∈ P1,ρ ⇐⇒
q∑
r=1

∑
π∈
◦

Πp+q
r

∫
Rp+q−2r

[ ∫
Rr
|F p+qπ (τ, h)|`r (dτ)

]2

`p+q−2r (dh) <∞.

This proves (a).
(b) Let F ∈ P1,ρ. Then by (a), ∀r ∈ [1, q],∑

π∈
◦

Πp+q
r

∫
Rp+q−2r

[ ∫
Rr
|F p+qπ (τ, h)|`r (dτ)

]2

`p+q−2r (dh) <∞,

i.e. by (6), F ∈ P1,ρr . Thus, F ∈ ⋂q
r=1 P1,ρr , and it follows from (7) that

Eρ(F ) =
q∑
r=1

Eρr(F ).(8)

But ρr(·) is defined by (3). Hence by theorem B.8(b),

Eρr(F ) =
∫
Rp+q−2r

{∫
Rp+q

F (t)Kr (dt, h)
}
ηp+q−2r (dh).(9)

Next, from (4) it follows that for `p+q−2r almost all h ∈ Rp+q−2r, F ∈ L1,Kr(·,h),
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whence by (2), F ∈ L1,λp+q
π (·,h) for each π ∈ ◦

Π p+q
r . Hence by (2) and 12.9(c),∫

Rp+q
F (t)Kr (dt, h) =

∑
π∈
◦

Πp+q
r

∫
Rp+q

F (t)λp+qπ (dt, h)

=
∑

π∈
◦

Πp+q
r

∫
Rr
F p+qπ (τ, h)`r (dτ).

Thus the equality (9) reduces to

Eρr(F ) =
∫
Rp+q−2r

[ ∑
π∈
◦

Πp+q
r

∫
Rr
F p+qπ (τ, h)`r (dτ)

]
ηp+q−2r (dh).(10)

Combining (8) and (10), we get (b).

With the last lemma in place, it is easy to demarcate both P1,ηp×ηq and Eηp×ηq .
We have

14.16. Proposition. Let p, q ∈ N+ & q 6 p. Then
(a) F ∈ P1,ηp×ηq iff F ∈ L2(Rp+q) &

q∑
r=1

∑
π∈
◦

Πp+q
r

∫
Rp+q−2r

[ ∫
Rr
|F p+qπ (τ, h)|`r (dτ)

]2

`p+q−2r (dh) <∞.

(b) ∀F ∈ P1,ηp×ηq ,

Eηp×ηq(F ) = Eηp+q(F ) +
q∑
r=1

∑
π∈
◦

Πp+q
r

∫
Rp+q−2r

[ ∫
Rr
F p+qπ (τ, h)`r (dτ)

]
ηp+q−2r (dh).

Proof. By 11.13, we have
ηp × ηq = ηp+q + ρ,(1)

where
∀D ∈ Dp, ρ(D) := ζp+q(D\Jp+q1 ) ∈ Sζp+q ⊥ Sηp+q .

It follows from A.31(b) that

F ∈ P1,ηp×ηq ⇐⇒ F ∈ P1,ηp+q & F ∈ P1,ρ

⇐⇒ F ∈ L2(Rp+q) & F ∈ P1,ρ,

i.e. by 14.15(a),

F ∈ P1,ηp×ηq ⇐⇒ F ∈ L2(Rp+q) &
q∑
r=1

∑
π∈
◦

Πp+q
r

∫
Rp+q−2r

[ ∫
Rr
|F p+qπ (τ, h)|`r (dτ)

]2

`p+q−2r (dh) <∞.

Thus (a).
(b) Next, for F ∈ P1,ηp+q ,

Eηp×ηq(F ) = Eηp+q(F ) + Eρ(F ), by (1).
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Substituting the value of Eρ(F ), given by 14.15(b), we get (b).

An especially useful application of proposition 14.16 is to the case where F is a
tensor product of p+ q functions, each in L2(R). We have:

14.17. Corollary. Let p, q ∈ N+, q 6 p & φ1, . . . , φp+q ∈ L2(R). Then
(a)

p+q×
k=1

φk ∈ P1,ηp×ηq ;

(b)

Eηp
( p×

i=1
φi

)
Eηq
( p+q×
j=p+1

φj

)

= Eηp+q

( p+q×
k=1

φk

)
+

q∑
r=1

∑
π∈
◦

Πp+q
r

[{ ∏
∆∈π

(φmin ∆, φmax ∆)
}
· Eηp+q−2r

(×
m∈M ′π

φm

)]
.

Proof. (a) It is easier to prove (a) directly rather than to deduce it from 14.16(a).
Since by proposition 11.13,

ηp × ηq = ηp+q + ρ, ρ(·) := ξp+q(·\Jp+q1 ),(1)

we need only show, cf. A.30(b), that
p+q×
k=1

φk ∈ P1,ηp+q &

p+q×
k=1

φk ∈ P1,ρ.(I)

Proof of (I). Since each φk ∈ L2(R), the classical Tonelli theorem shows that
p+q×
k=1

φk ∈ L2(Rp+q) = P1,ηp+q .

Next, since each φk = L2(R) = Pξ1 , therefore by corollary 14.11,

F :=

p+q×
k=1

φk ∈ P1,ξp+q , i.e. |F |1,ξp+q <∞.(2)

But by (1) and 9.13(h), ∀x′ ∈ (L2)′ & ∀A ∈ Bp+q,
|x ◦ ρ|(A) = |x′ ◦ ζp+q|(A\Jp+q1 ) 6 |x′ ◦ ζp+q|(A) 6 |x′ ◦ ξp+q|(A).

It follows that |F |1,ρ 6 |F |1,ξp+q < ∞, by (2), i.e. F ∈ P1,ρ. Thus (I) is established
and (a) proved.

(b) Write Φ :=×p
k=1 φi, Ψ :=×p+q

j=p+1 φj . Then by the classical Tonelli theorem,

Φ ∈ L2(Rp) = P1,ηp & Ψ ∈ L2(Rq) = P1,ηq .

Hence by (a), the Fubini proposition 14.1 and proposition 14.16(b),

LHS(b) := Eηp(Φ) · Eηq(Ψ) = Eηp×ηq(Φ ×Ψ) = Eηp×ηq(F )

= Eηp+q(F ) +
q∑
r=1

∑
π∈
◦

Πp+q
r

∫
Rp+q−2r

[ ∫
Rr
F p+qπ (τ, h)`r (dτ)

]
ηp+q−2r (dh).(3)
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But F :=×p+q
k=1 φk, and hence by 12.20(b), ∀π ∈ Π p+q

r & ∀h ∈ Rp+q−2r,∫
Rr
F p+qπ (τ, h)`r (dτ) =

∏
∆∈π

(φmin ∆, φmax ∆) ·
(×
m∈M ′π

φm

)
(h).

Substituting from this on the RHS of (3), and observing that
∏

∆∈π(φmin ∆, φmax ∆)
is independent of h, we get the equality in (b).

A simple but important consequence of the last corollary pertains to the tensor
product of two tensor products, such that the component functions of one are or-
thogonal to those of the other. This result, which is a useful lemma, reads as follows:

14.18. Lemma. Let (i) p, q ∈ N+ & q 6 p, (ii) f1, . . . , fp & g1, . . . , gq ∈ L2(R) &
∀i ∈ [1, p] & ∀j ∈ [1, q], fi ⊥ gj . Then

Eηp+q

( p×
i=1

fi ×
q×
j=1

gj

)
= Eηp

( p×
i=1

fi

)
· Eηq

( q×
j=1

gj

)
.

Proof. Let

∀k ∈ [1, p+ q], φk =

{
fk if k ∈ [1, p],
gk−p if k ∈ [p+ 1, p+ q].

Then φ1, . . . , φp+q ∈ L2(R) and hence Eηp(×p
k=1 φk) ·Eηq(×p+q

k=p+q φk) is given by the
formula in 14.17(b).

Now let r ∈ [1, q] and π ∈ ◦
Π p+q
r . Then ∀∆ = {i, j} ∈ π, 1 6 i 6 p < j 6 p + q,

and therefore by (i), φi := fi ⊥ gj−p =: φj , i.e. (φmin ∆, φmax ∆) = 0. It follows that
the second term on the RHS of 14.17(b) vanishes, and therefore

Eηp
( p×

i=1
φi

)
· Eηq

( p+q×
j=p+1

φj

)
= Eηp+q =

( p+q×
k=1

φk

)
.(1)

In (1), φi = fi and φk = gk−p. Hence, writing j := k − p, (1) reduces to the desired
equality.

Since the functions g1, . . . , gq in lemma 14.18, apart from being in L2(R) and being
orthogonal to the fk are arbitrary, we may consider the special case in which they
break up into two groups that are themselves orthogonal. Then by the last lemma,
Eηq(×q

j=1 gj) will itself factor into a product of two integrals, say

Eηq1

( q1×
k=1

gk

)
· Eηq2

( q2×
k=q1+1

gj

)
where q1 + q2 = q.

The substitution of this on the RHS of 14.17, will yield a factorization of the LHS of
14.17 into three fractors. This process can be repeated any finite number of times.
We thus arrive at the following important theorem:

14.19. Theorem. (Tensor product of orthogonal blocks) Let (i) n ∈ N+,
(ii) ∀i ∈ [1, n], pi ∈ N+ & ∀j ∈ [1, pi], fij ∈ L2(R),
(iii) ∀i, i′ ∈ [1, n] 3 i 6= i′, {fi,1, . . . , fi,pi} ⊥ {fi′,1, . . . , fi′,pi′}.
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Then

Eηp1+···+pn

( n×
i=1

pi×
j=1

fi,j

)
=

n∏
i=1

Eηpi

( pi×
j=1

fi,j

)
.

Proof. By 14.18 the equality holds for n = 2. Assume that it holds for n and define
φk for ∀k ∈ [1, p1 + · · ·+ pn] as follows

for k ∈ [1, p1], φk = f1,k,

k ∈ [p1 + 1, p1 + p2], φk = f2,k−p1 ,

k ∈ [p1 + p2 + 1, p1 + p2 + p3], φk = f3,k−(p1+p2),

and so on, and let

Φ :=

p1+···+pn×
k=1

φk & Ψ :=

pn+1×
j=1

fn+1,j .(1)

Then

Φ =

n×
i=1

pi×
j=1

fi,j &

p1+···+pn+1×
k=1

φk = Φ ×Ψ .

Hence

Eηp1+···+pn+1

( p1+···+pn+1×
k=1

φk

)
= Eη(p1+···+pn)+pn+1

(Φ ×Ψ)

= Eηp1+···+pn (Φ) · Eηpn+1
(Ψ) by 14.18, as Φ ⊥ Ψ

= Eηp1+···+pn

( n×
i=1

pi×
j=1

fi,j

)
· Eηp+1

( pn+1×
j=1

fn+1,j

)

=
n∏
i=1

Eηpi

( pi×
j=1

fi,j

)
· Eηp+1

( pn+1×
j=1

fn+1,j

)
(2)

=
n+1∏
i=1

Eηpi

( pi×
j=1

fi,j

)
,

(2) by the inductive assumption. Thus the equality holds for n+ 1.

From this powerful theorem, the following important theorem of K. Ito follows at
once:

14.20. Theorem. (Ito 1951) Let n ∈ N+ & f1, . . . , fn ∈ L2(R) be mutually
orthogonal. Then ∀p1, . . . , pn ∈ N+,

Eηp1+···+pn

{ n×
i=1

f×pii

}
=

n∏
i=1

Eηpi{f
×pi
i }.

Proof. Let ∀i ∈ [1, n] and ∀j ∈ [1, p], fi,j := fi. Then the fi,j satisfy the premises
of 14.19, and of course each×pi

j=1 fi,j = f×pii . Hence the equality in 14.19 reduces to
the one enunciated.
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The set-theoretic analogue of Ito’s theorem, also very important, emerges as an
immediate corollary:

14.21. Corollary. (Ito’s theorem for sets) Let n ∈ N+ & A1, . . . , An ∈ D1 be
mutually disjoint. Then ∀p1, . . . , pn ∈ N+,

ηp1+···+pn(Ap1
1 × · · · ×Apnn ) = ηp1(Ap1

1 ) · · · ηpn(Apnn ).

Proof. Let ∀i ∈ [1, n], fi = χAi . Then fi ∈ L2(R), and since Ai‖Aj ,therefore
fi ⊥ fj . Hence the equality of theorem 14.20 holds. But this equality reduces to that
in 14.21, since for ∀i, j ∈ [1, n],

f×pii = (χAi)
×pi = χAp

i
&

n×
i=1

f×pii =

n×
i=1

χApi
i

= χApi
i
×···×Apnn .

15. The inversion formulae

Let p ∈ N+ and D ∈ Dp. Our objective is to show that the inversion of the formula
in 11.10, namely,

ξp(D) =
[p/2]∑
k=0

∫
Rp−2k

γpk(D,h)ηp−2k (dh),(1)

takes the form

ηp(D) =
[p/2]∑
k=0

(−1)k
∫
Rp−2k

γpk(D,h)ξp−2k (dh),(2)

and that the inversion of the integral formula in 13.12, namely,

(1′) Eξp(f) =
[p/2]∑
k=0

Eηp−2k(fpk ),

takes the form

(2′) Eηp(f) =
[p/2]∑
k=0

(−1)kEξp−2k(fpk ).

The formula (2′) was worked out in essence for the cases p = 2, 3 by Wiener (1958,
pp. 28–36).

Since γpk(D, ·) is a bounded measurable function on Rp−2k with support in Dp−2k,
cf. 4.16(d), it follows from (A.19) that γpk(D, ·) ∈ P1,ξp−2k , and the integrals in (2)
exist. Thus the expansion (2) is meaningful. It may be viewed as a vectorial extension
of the standard expansion of the pth Hermite polynomial in the Kakutani format:

Hp(u, σ) =
[p/2]∑
k=0

(−1)k
(
p

2k

)
α2kσ

kup−2k, u ∈ R & σ ∈ R+, cf. 16.2.(3)

Indeed the RHSs of (2) and (3) match, upon taking D = Ap, u = ξ1(A) and σ =
|ξ1(A)|2, cf. 16.3(c) below.

Since, cf. 9.6, ηp(D) = Proj(ξp(D)|S⊥ξp−2
), the formula (2) may also be viewed
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as the outcome of a Gram–Schmidt process applied to the sequence of measures
{ξ0, ξ2, ξ4, . . .} or {ξ1, ξ3, ξ5, . . .} in which integral signs rather than the usual sigmas
appear. Such a process can be carried out for small p, such as 2, 3, 4, and for
sets D, which are intervals, by adopting Wiener’s approach to find the functional
counterparts of ηn(·), namely Gn{K(·)} (cf. Wiener 1958, pp. 28–36).

The inversion (2) is, however, very difficult to prove in full generality. It is a
fundamental fact that ∀P ∈ Pp, ηp(P ) has to be a linear combination of the ξp−2k
measures of the p− 2k dimensional faces of P , for k ∈ [0, [p/2]]; we have:

15.1. Proposition. Let p ∈ N+ & P ∈ Pp. Then ∀k ∈ [0, [p/2]], ∀M ⊆ [1, p] 3
#M = 2k, ∃c(P,M) ∈ R such that

ηp(P ) =
[p/2]∑
k=0

{ ∑
M⊆[1,p]
#M=2k

c(P,M)ξp−2k(PM ′)
}
, where M ′ := [1, p]\M.

This result, in the form

ηp(P ) ∈ 〈ξp−2k(PM ′) : k ∈ [0, [1, p/2]],M ⊆ [1, p] & #M = 2k〉,
where 〈S〉 stands for the linear manifold spanned by S, can be proved by induction.
It is of small use unless accompanied by a statement of the coefficients c(P,M).
Inspection with small p clearly indicates that ∀M ⊆ [1, p] with #M = 2k, c(P,M) =
(−1)k

∑
π∈Πp

k
apπ(P ), where apπ(P ) are the very coefficients defined in (3.11). One is

thus led to conjecture (correctly, it turns out) that in general,

∀p ∈ N+ & ∀P ∈ Pp, ηp(P ) =
[p/2]∑
k=0

(−1)k
{ ∑
π∈Πp

k

apπ(P )ξp−2k(PM ′π)
}
.(4)

Attempts at a direct proof of (4) get bogged down in a combinatoric quagmire,
however. We shall therefore follow an alternative, more general, approach suggested
by the following considerations.

Our task is to invert the infinite triangular system of integral equations, the pth
equation of which is (1). Thus our problem falls in the arena of so-called Möbius
inversion (cf. Gian-Carlo Rota 1964). The validity of the equation (2) for small
p gives us the valuable hint that the solution has the same integrands but with
alternating signs. The task is analogous to that of inverting an infinite triangular
matrix [aij ] and showing that [aij ]−1 = [(−1)i+jaij ]. For the last equality to prevail,
the aij must satisfy an infinite number of recurrence relations such as

2a42 = a43 · a32, 2a51 = a52 · a21 − a53 · a31 + a54 · a41, . . . .

In our problem, inspection with small p clearly suggests that the recurrence relations
that ought to govern the canonical coefficients γpk(·, ·) are:(

k

j

)
γpk(D,h) =

∫
Rp−2j

γpj (D, t)γp−2j
k−j (dt, h), D ∈ Dp, h ∈ Rp−2k,(5)

for 0 6 j 6 k 6 [p/2]. With their aid it becomes possible to prove the general formula
(2). The formula (4) then follows as a special case of (2) and this in turn establishes
the proposition 15.1.

We proceed to establish (5). Almost all the difficult combinatorial questions that

Phil. Trans. R. Soc. Lond. A (1997)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


1222 P. R. Masani

arise in the proof can be reduced to questions about a certain division operation
A|B defined for sets of positive integers when A ⊆ B, and about the relationships
between the classes of partitions ΠB\A and Π(B\A)|B, when B\A has even cardinality.
To avoid a digression, this purely combinatorial study is relegated to Appendix C.
This the reader should now consult, since extensive use is made of it.

The following fundamental recurrence relation governing the canonical coefficients
λpπ(·, h) of 4.13 is an essential stepping stone on the way to the recurrence (5) gov-
erning the coefficients γpk(·, h).

15.2. Lemma. (Recurrence equation for λpπ(D,h)) Let
(i) p ∈ N+ & 1 6 j 6 k 6 [p/2],
(ii) π1 ∈ Π p

j , π2 ∈ Π p
k−j be such that Mπ2 ⊆ [1, p]\Mπ1 =: M ′π1

,
(iii) π̄2 := the canonical Mπ2 |M ′π1

associate of π2 (cf. C.7).
Then (a) π1 ∪ π2 ∈ Π p

k , π̄2 ∈ Π p−2j
k−j & Mπ̄2 = Mπ2 |M ′π1

;
(b) ∀D ∈ Dp & ∀h ∈ Rp−2k,

λpπ1∪π2
(D,h) =

∫
Rp−2j

λpπ1
(D, t)λp−2j

π̄2
(dt, h).

Proof. (a) Obviously by (ii), π1∪π2 ∈ Π p
k . Next by C.2, Mπ2 |M ′π1

⊆ [1,#(M ′π1
)] =

[1, p− 2j]. Hence, cf. C.7 and Note, π̄2 ∈ Π p−2j
k−j & Mπ̄2 = Mπ2 |M ′π1

. Thus (a).
(b) Grant momentarily that

the equality in (b) holds for all D ∈ Pp,(I)

and let for π1, π2 as in (ii) and for fixed h ∈ Rp−2k,

µ(D) := λpπ1∪π2
(D,h) & ν(D) :=

∫
Rp−2j

λpπ1
(D, t)λp−2j

π̄2
(dt, h), D ∈ Dp.

Then by 4.15(a), µ ∈ CA(Dp,R0+) & λp−2j
π̄2

(·, h) ∈ CA(Dp−2j ,R0+). Therefore by
B.1(a), ν ∈ CA(Dp,R0+). Moreover by (I), µ = ν on Pp. Hence by the identity
principle A.8, µ = ν on δ-ring (Pp) = Dp. Thus it only remains to justify (I).

Proof of (I). Let P ∈ Pp and h ∈ Rp−2k. Since π1 ∈ Π p
j , therefore by (4.19),

∀t ∈ Rp−2j , λpπ1
(P, t) = `j{P (π1)}χPM′π1

(t).(1)

Now #M ′π1
= p− 2j. Hence

PM ′π1
:= ×

i∈M ′π1

P i ∈ Pp−2j .(2)

Next, since by (a), π̄2 ∈ Π p−2j
k−j & #Mπ̄2 = 2#π̄2 = 2(k − j), therefore

#{[1, p− 2j]\Mπ̄2} = (p− 2j)− 2(k − j) = p− 2k.(3)

By (2), (3) and 4.13, the symbol λp−2j
π̄2

(PM ′π2
, h) is well defined. Hence by (1),∫

Rp−2j
λpπ1

(P, t)λp−2j
π̄2

(dt, h) =
∫
Rp−2j

`j{P (π1)}χPM′π1
(t)λp−2j

π̄2
(dt, h)

= `j{P (π1)}λp−2j
π̄2

(PM ′π1
, h).(4)
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Now grant momentarily that

λp−2j
π̄2

(PM ′π1
, h) = `k−j [P (π2)]χPM′

π1∪π2

(h).(II)

Then

RHS(4) = `j{P (π1)} · `k−j [P (π2)]χPM′
π1∪π2

(h) = `k{P (π1)× P (π2)}χPM′
π1∪π2

(h)

= `k{P (π1 ∪ π2)}χPM′
π1∪π2

(h) =: λpπ1∪π2
(P, h).

Substituting in (4) we get the desired equality. This completes the proof of (I) and
establishes (b) but for the justification of (II).

Proof of (II). By (2), (3) and (1),

λp−2j
π̄2

(PM ′π1
, h) = `k−j [(PM ′π1

)(π̄2)]χ(PM′π1
)M′

π̄2

(h),(5)

where by (a) and C.2(b),

M ′π̄2
:= [1, p− 2j]\Mπ̄2 = [1,#M ′π1

]\(Mπ2 |M ′π1
) = (M ′π1

\Mπ2)|M ′π1
.

Now trivially

M ′π1
\Mπ2 = ([1, p]\Mπ1)\Mπ2 = [1, p]\(Mπ1 ∪Mπ2)

= [1, p]\Mπ1∪π2 = M ′π1∪π2
.

Thus M ′π̄2
= M ′π1∪π2

|M ′π1
, and therefore by C.3,

(PM ′π1
)M ′π̄2

= (PM ′π1
)M ′π1∪π2

|M ′π1
= PM ′π1∪π2

.

We also note that by C.8(b), (PM ′π1
)(π̄2) = P (π2). Substituting these values in (5),

we get (II).

Getting the corresponding integral equation for the coefficients γpk from the one
just obtained for the λpπ1∪π2 is a matter of complicated combinatorics, requiring an
appeal to the summation lemma C.5 in Appendix C. We have:

15.3. Theorem. Let p ∈ N+ and 0 6 j 6 k 6 [p/2]. Then ∀D ∈ Dp and ∀h ∈
Rp−2k, (

k

j

)
γpk(D,h) =

∫
Rp−2j

γpj (D, t)γp−2j
k−j (dt, h).

Proof. Let D ∈ Dp and h ∈ Rp−2k. For j = 0, we have γpj (D,h) = χD(h), cf. 4.13
Note, whence the equality follows trivially. For j = k, again γp−2j

k−j (∆, h) = χ∆(h) =
mh(∆), where mh is the unit mass carried at h. The RHS of the equality reduces to
γpj (D,h) as does the LHS. Thus the result is again trivial.

Let 1 6 j < k 6 [p/2]. To deal with the LHS of the enunciated equality, let

∀π ∈ Π p
k & ∀J ⊆ [1, k], πJ := {∆i : ∆i ∈ π & i ∈ J}.

Then with J ′ := [1, k]\J , we have

∀π ∈ Π p
k & ∀J ⊆ [1, k], πJ ∪ πJ′ = π.(1)

Now define

Π p
j,k := {(πJ , πJ′) : ∃π ∈ Π p

k ,∃J ⊆ [1, k] & #J = j} =
⋃
π∈Πp

k

⋃
J⊆[1,k]
#J=j

{(πJ , πJ ′)}.(2)
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We assert that

∀D ∈ Dp & ∀h ∈ Rp−2k,
∑

(π1,π2)∈Πp
j,k

λpπ1∪π2
(D,h) =

(
k

j

)
γpk(D,h).(I)

Proof of (I). Let D ∈ Dp & h ∈ Rp−2k. Then by (2),

LHS(I) =
∑
π∈Πp

k

∑
J⊆[1,k]
#J=j

λpπJ∪πJ′ (D,h)

=
∑
π∈Πp

k

∑
J⊆[1,k]
#J=j

λpπ(D,h) =
∑
J⊆[1,k]
#J=j

∑
π∈Πp

k

λpπ(D,h) by (1),

=
∑
J⊆[1,k]
#J=j

γpk(D,h) =
(
k

j

)
γpk(D,h).

Thus (I).
To deal with the RHS of the enunciated equality, we assert first that

given L ⊆ [1, p], #L = 2j & L′ := [1, p]\L, ∀∆ ∈ Dk−j & ∀h ∈ Rp−2k,

γp−2j
k−j (∆, h) =

∑
L⊆M⊆[1,p]

#M=2k

∑
π∈ΠM\L

λp−2j
π̄ (∆, h),

where π̄ is the Mπ|L′ associate of π ∈ ΠM\L, cf. C.7.

(II)

Proof of (II). Let ∆ ∈ Dk−j and h ∈ Rp−2k. Since p − 2k = (p − 2j) − 2(k − j),
therefore

γp−2j
k−j (∆, h) =

∑
π∈Πp−2j

k−j

λp−2j
π (∆, h) =

∑
N⊆[1,p−2j]
#N=2(k−j)

∑
π∈ΠN

λp−2j
π (∆, h) by 1.16(d),

=
∑

N⊆[1,p−2j]
#N=2(k−j)

g(N), where g(N) :=
∑
π∈ΠN

λp−2j
π (∆, h),

=
∑

L⊆M⊆[1,p]
#M=2k

g{(M\L)|L′} by lemma C.5,

=
∑

L⊆M⊆[1,p]
#M=2k

∑
π∈Π(M\L)|L′

λp−2j
π (∆, h).

But by C.8(a), Π(M\L)|L′ = {π̄ : π ∈ ΠM\L}. Hence

γp−2j
k−j (∆, h) =

∑
L⊆M⊆[1,p]

#M=2k

∑
π∈ΠM\L

λp−2k
π̄ (∆, h).

Thus (II).
Now let D ∈ Dp, t ∈ Rp−2j , ∆ ∈ Dp−2j & h ∈ Rp−2k. Then by 4.13 and (II), in
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which we take L = Mπ1 , and replace M by N for notational clarity,

γpj (D, t)γp−2j
k−j (∆, h) =

∑
π1∈Πp

j

λpπ1
(D, t)

∑
Mπ1⊆N⊆[1,p]

#N=2k

∑
π2∈ΠN\Mπ1

λp−2j
π̄2

(∆, h)

=
∑
π1∈Πp

j

∑
Mπ1⊆N⊆[1,p]

#N=2k

∑
π2∈ΠN\Mπ1

λpπ1
(D, t)λp−2j

π̄2
(∆, h).

From this it follows that∫
Rp−2j

γpj (D, t)γp−2j
k−j (dt, h) =

∑
π1∈Πp

j

∑
Mπ1⊆N⊆[1,p]

#N=2k

∑
π2∈ΠN\Mπ1

∫
Rp−2j

λpπ1
(D, t)λp−2j

π̄2
(dt, h)

=
∑
π1∈Πp

j

∑
Mπ1⊆N⊆[1,p]

#N=2k

∑
π2∈ΠN\Mπ1

λpπ1∪π2
(D,h),(3)

by lemma 15.2, which is appliable since π2 ∈ ΠN\Mπ1
, and therefore π2 ∈ Πk−j &

Mπ2‖Mπ1 .
Comparing the LHS(I) and the RHS(3), we see that to complete the proof we need

only show that for any numerical function f on Π p
j,k,∑

(π1,π2)∈Πp
j,k

f(π1, π2) =
∑
π1∈Πp

j

∑
Mπ1⊆N⊆[1,p]

#N=2k

∑
π2∈ΠN\Mπ1

f(π1, π2),

which would of course follow, provided that

Π p
j,k = {(π1, π2) : π1 ∈ Π p

j & ∃N 3Mπ1 ⊆ N ⊆ [1, p](III)

& #N = 2k & π2 ∈ ΠN\Mπ1
}.

We shall complete the proof by establishing (III).
Proof of (III). Let (πJ , πJ′) ∈ Π p

j,k. Then by (2), π ∈ Π p
k , J ⊆ [1, k] & #J = j.

Now define
N := Mπ, π1 := πJ & π2 := πJ′ .

Then since #J = j, therefore π1 ∈ Π p
j . Since by (1) π = πJ ∪ πJ′ , therefore Mπ1 ⊆

Mπ = N ⊆ [1, k] and Mπ2 = Mπ\Mπ1 = N\Mπ1 , i.e. π ∈ ΠN\Mπ1
. Thus (π1, π2) ∈

RHS(III).
Next, let (π1, π2) ∈ RHS(III). Then Mπ1 ⊆ N & Mπ2 = N\Mπ1 . Therefore

#Mπ2 = #N −#Mπ1 = 2k − 2j = 2(k − j) and so π2 ∈ Π p
k−j . Define π := π1 ∪ π2.

Then since Mπ1‖Mπ2 , therefore π1‖π2. Hence #π = #π1 + #π2 = j + k− j = k, i.e.
π ∈ Π p

k . Let π = {∆1, . . . ,∆k} and define J := {i : ∆i ∈ π1}. Then #J = #π1 = j.
And

πJ := {∆i : i ∈ J & ∆i ∈ π} = π1

& πJ′ := {∆i : i ∈ J ′ & ∆i ∈ π} = {∆i : ∆i ∈ π\π1} = π2.

Thus (π1, π2) = (πJ , πJ′) ∈ Π p
j,k. Thus (III).

From theorem 15.3 we can deduce the inversion formula (2). However, it is more
economical to establish the inversion (2′) first, and to get (2) from it as a special case.
To establish (2′), however, it is necessary to get a connecting formula for functional
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marginalization (§12) akin to that for the canonical coefficients given in theorem
15.3. The required formula is easily revealed by reframing 15.3 in terms of indicator
functions. But the proof, while considerably simpler than that of 15.3, is not entirely
obvious, and as with other justifications of the heuristic rule 12.8 calls for an appeal
to Appendix B.

15.4. Lemma. Let p ∈ N+ & 0 6 j 6 k 6 [p/2]. Then ∀f ∈ P1,ξp ,

fpj ∈Mp−2j
k−j & (fpj )p−2j

k−j =
(
k

j

)
fpk , a.e. `p−2k on Rp−2k, cf. definition 12.11(c).

Proof. Since (p− 2j)− 2(k − j) = p− 2k, therefore by 4.16(a),

∀h ∈ Rp−2k, µh(·) := γp−2j
k−j (·, h) ∈ CA(Dp−2j ,R0+).(1)

Let D ∈ Dp. Then by 4.16(b), γpj (D, ·) is measurable, bounded and boundedly sup-
ported on Rp−2j . Hence{

∀D ∈ Dp, γpj (D, ·) ∈ L1,µh(·)
& ∀s ∈ Rp−2j , γpj (·, s) ∈ CA(Dp,R0+).

(2)

It follows from (1) and B.9(a) that the measure µh(·) satisfies the conditions on the
measure σ imposed in (B.2) with H = R, and from (2) that the kernel γpj (·, ·) on
Dp × Rp−2j satisfies those imposed in (B.3). Hence on letting

∀h ∈ Rp−2k & ∀D ∈ Dp, ρh(D) :=
∫
Rp−2j

γpj (D, s)µh (ds),(3)

we see from theorem B.8 that ∀h ∈ Rp−2k,
∀f ∈ L1,ρh , fpj (·) =

∫
Rp
f(t)γpj (dt, ·) ∈ L1,µh =: L1,γp−2j

k−j

& Eρh(f) = Eµh(fpj ) :=
∫
Rp−2j

fpj (s)γp−2j
k−j (ds, h) =: (fpj )p−2j

k−j (h).

(4)
Next we appeal to 15.3: ∀h ∈ Rp−2k & ∀D ∈ Dp,

ρh(D) :=
∫
Rp−2j

γpj (D, s)γp−2j
k−j (ds, h) =

(
k

j

)
γpk(D,h).(5)

By (5), L1,ρh = L1,γp
k

(·,h) and Eρh =
(
k
j

)
Eγp

k
(·,h). Hence (4) can be rewritten

∀f ∈ L1,γp
k

(·,h), fpj (·) ∈ L1,γp−2j
k−j (·,h) &

(fpj )p−2j
k−j (h) = Eρh(f) =

(
k

j

)
Eγp

k
(·,h)(f).

(6)

Now let f ∈ P1,ξp . Then by theorem 13.12, ∀k ∈ [1, [p/2]], f ∈ Mp
k, and so by

definition 12.11(b),

∀k ∈ [1, [p/2]], Hp
k (f) = a carrier of `p−2k.(7)

Now fix k ∈ [1, [p/2]], and let h ∈ Hp
k (f). Then by 12.11(a), f ∈ L1,γp

k
(·,h). Hence
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by (6), fpj ∈ L1,γp−2j
k−j (·,h), i.e. by 12.11(a), h ∈ Hp−2j

k−j (fpj ). Thus Hp
k (f) ⊆ Hp−2j

k−j (fpj ).
Hence by (7),

Hp−2j
k−j (fpj ) = a carrier of `p−2k, i.e. of `(p−2j)−2(k−j).

Thus by 12.11(b),

fpj ∈Mp−2j
k−j .(8)

Next, since h ∈ Hp
k (f), therefore by 12.11(c), Eγp

k
(·,h)(f) = fpk (h), and thus the

equality in (6) reduces to

(fpj )p−2j
k−j (h) =

(
k

j

)
fpj (h), h ∈ Hp

k (f).(9)

Since Hp
k (f) is a carrier of `p−2k, (8) and (9) finish the proof.

When we add the equations in theorem 15.4 with alternating signs, we get expres-
sions reminiscent of those for the Euler characteristic of polytopes in Rp:

15.5. Corollary. Let p ∈ N+, k ∈ [1, [p/2]]. Then ∀f ∈ P1,ξp , and `p−2k almost all
h ∈ Rp−2k,

(a)
k∑
j=0

(−1)j(fpj )p−2k
k−j (h) = 0;

(b)
k−1∑
j=1

(−1)j(fpj )p−2k
k−j (h) = {1 + (−1)k}fpk (h).

Proof. (a) Let f ∈ P1,ξp . Then by 15.4, we have a.e. `p−2k on Rp−2k,
k∑
j=0

(−1)j(fpj )p−2k
k−j (h) =

k∑
j=0

(−1)j
(
k

j

)
fpj =

{ k∑
j=0

(−1)j
(
k

j

)}
fpj = 0.

(b) We proceed as in (a), and note that
∑k−1

j=1 (−1)j+1
(
k
j

)
= 1 + (−1)k.

These Euler-type equations are crucial in proving the initial inversion formula (2′)
to which we now turn. Note that the formula (2′) will not hold for all f ∈ P1,ηp .
For, cf. 13.3, we may have f ∈ P1,ηp\P1,ξp , and for such an f , the k = 0 term in
(2′), namely, Eξp(f

p
0 ) = Eξp(f), does not make sense. Thus the premise in 15.6 that

f ∈ P1,ξp cannot be relaxed.

15.6. Theorem. (Inversion formula for Eηp) Let p ∈ N+ & f ∈ P1,ξp . Then
(a) ∀j ∈ [0, [p/2]], f ∈Mp

j , & fpj ∈ P1,ξp−2j ;

(b) Eηp(f) =
[p/2]∑
k=0

(−1)kEξp−2k(fpk ).

Proof. (a) Let j ∈ [0, [p/2]], and grant momentarily that

(α) |f(·)| ∈ Mp
j & (β) |f |pj ∈ P1,ξp−2j .(I)

By (I)(α) and 12.13(b), f ∈Mp
j and by 12.14(b), ∃Nf ∈ N`p−2k such that

|fpj (·)| 6 |f |pj (·) on Rp−2j\Nf .(1)

By (1), (I)(β) and the domination principle (A.18), fpj ∈ P1,ξp−2j . Thus we have (a),
once (I) is justified.
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Proof of (I)(α). Write q := p − 2j. Then since, cf. (A.11), F (·) := |f(·)| ∈ P1,ξp ,
therefore by 13.12,

F ∈Mp
j & G := F pj ∈ P1,ηp−2j = P1,ηq .(2)

Thus (I)(α) is proved.
Proof of (I)(β). We have to show that G ∈ P1,ξq . Hence by 13.12, we need only

show that

(∗) ∀i ∈ [1, [q/2]], Gqi ∈ P1,ηq−2i .

Let i ∈ [1, [q/2]] & k := i+ j. Then obviously, since q := p− 2j,

i 6 j 6 k = j + i 6 j + [q/2] = j + [ 1
2p− j] 6 j + 1

2p− j = 1
2p,

and since k ∈ N+, we conclude that 1 6 j 6 k 6 [p/2]. Hence by definition (2) of G
and the last lemma,

Gqi := Gqk−j = (F pj )p−2j
k−j =

(
k

j

)
· F pk .(3)

But since F ∈ P1,ξp , therefore by 13.12, F pk ∈ P1,ηp−2k . Hence by (3), Gqi ∈ P1,ηp−2k .
But, p− 2k = p− 2(i+ j) = (p− 2j)− 2i = q − 2i. Thus Gqi ∈ P1,ηq−2i , i.e. we have
(∗). This proves (I)(β), and finishes the proof of (a).

(b) Since by (a), ∀k ∈ [0, [p/2]], fpk ∈ P1,ξp−2k , therefore by 13.12,

Eξp−2k(fpk ) =
[(p−2k)/2]∑

i=0

Eηp−2k−2i{(fpk )p−2k
i }

=
[p/2]∑
j=k

Eηp−2j{(fpk )p−2k
j−k }, putting j := k + i.(1)

Hence

S :=
[p/2]∑
k=0

(−1)kEξp−2k(fpk ) =
[p/2]∑
k=0

(−1)k
[p/2]∑
j=k

Eηp−2j{(fpk )p−2k
j−k }.

Changing the order of summation and bringing out the integral operator, we get

S =
[p/2]∑
j=0

Eηp−2j

[ j∑
k=0

(−1)k(fpk )p−2k
j−k

]
=

[p/2]∑
k=0

Eηp−2k

[ k∑
j=0

(−1)j(fpj )p−2j
k−j

]
,(2)

on interchanging the dummy variables j, k. Breaking the summation into k = 0 and∑[p/2]
k=1 , and noting that by 15.5(a), the last summation for k > 1 vanishes a.e. `p−2k

on Rp−2k, we see from (2) that

S = Eηp{(−1)0(fp0 )p0} = Eηp(f), cf. 12.14(f),

i.e. we have (b).

The inversion formula (1) follows as an easy corollary of the last theorem:

15.7. Inversion theorem. Let p ∈ N+. Then ∀D ∈ Dp,

ηp(D) =
[p/2]∑
k=0

(−1)k
∫
Rp−2j

γpk(D,h)ξp−2k (dh).
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Proof. Let D ∈ Dp. Then χD ∈ P1,ξp . Hence by theorem 15.6,

Eηp(χD) =
[p/2]∑
k=0

(−1)kEξp−2k{(χD)pk}.(1)

Since, by 12.14(d), (χD)pk(·) = γpk(D, ·), therefore (1) reduces to the desired formula.

16. Symmetric intervals, symmetric functional tensor products,
and the Hermite expansion

Our first concern is with intervals of the form Ap, where A ∈ D1. These intervals
are more than just hypercubes, i.e. intervals ×p

i=1 P
i having edges P i of the same

length: the edges themselves are equal. It is a triviality, cf. 1.40(b), that

P ∈ Psym
p ⇐⇒ ∃A ∈ D1 3 P = Ap.(16.1)

The nexus between the ηp and ξp measures of symmetric intervals and the Hermite
polynomials in the Katutani format:12

∀p ∈ N+, ∀σ ∈ R+ & ∀u ∈ R,

Hp(u, σ) :=
[p/2]∑
k=0

(−1)k
(
p

2k

)
α2kσ

kup−2k,
(16.2)

is clear from the next lemma, parts (b), (c):

16.3. Lemma. Let p ∈ N+ & k ∈ [1, [p/2]]. Then
(a) ∀A ∈ D1 & ∀h ∈ Rp−2k,

γpk(Ap, h) =
(
p

2k

)
α2k{`1(A)}kχAp−2k(h);

(b) ∀A ∈ D1, ηp(Ap) = Hp{ξ1(A), `1(A)};
(c) ∀A ∈ D1,

ξp(Ap) =
[p/2]∑
k=0

(
p

2k

)
α2k`k(Ak)Hp−2k{ξ1(A), `1(A)}.

Proof. Let A ∈ D1 & h ∈ Rp−2k. Then by 6.17,

γpk(Ap, h) =
(
p

2k

)
α2kλ

p
πk

(Ap, h),(1)

and by (4.19),

λpπk(Ap, h) = `k

{×
∆∈πk

Ap(∆)
}
χ(Ap)[2k+1,p](h).

But obviously Ap(∆) = A and (Ap)[2k+1,p] = Ap−2k. Hence λpπk(Ap, h) = {`1(A)}k ×
χAp−2k(h), and (1) reduces to the equality in (a).

12 Actually the Hp(µ, σ) defined in (16.2) is
√
p! times the polynomial in Katutani’s paper, cf. (1950,

p. 321, (14)).
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(b) Let A ∈ D1 & k ∈ [1, [p/2]]. Integrating the equality in (a) with respect to
ξp−2k, we get∫

Rp−2k
γpk(Ap, h)ξp−2k (dh) =

(
p

2k

)
α2k`1(A)k{ξ1(A)}p−2k,

whence by theorem 15.7 and (16.2),

ηp(Ap) =
[p/2]∑
k=0

(−1)k
∫
Rp−2k

γpk(Ap, h)ξp−2k (dh) =: Hp{ξ1(A), `1(A)}.

Thus (b).
(c) We now appeal to corollary 11.10(a):

ξp(Ap) =
[p/2]∑
k=0

∫
Rp−2k

γpk(Ap, h)ηp−2k (dh)

=
[p/2]∑
k=0

(
p

2k

)
α2k{`1(A)}kηp−2k(Ap−2k) by (a)

=
[p/2]∑
k=0

(
p

2k

)
α2k`k(Ak)Hp−2k{ξ1(A), `1(A)} by (b).

Turning to integration, the result on tensor powers that correspond to 16.3(b) on
sets, reads as follows:

16.4. Theorem. Let f ∈ L2(R). Then

∀p ∈ N+, f×p ∈ L2(Rp) & Eηp(f×p) = Hp{Eξ1(f), |f |22,`1}.

Proof. That f×p ∈ L2(Rp) follows easily from Fubini’s theorem. To turn to the
equality, let p ∈ N+ and recall that by 12.21(c), ∀k ∈ [0, [p/2] & ∀h ∈ Rp−2k,

(f×p)pk(h) =
(
p

2k

)
α2k · |f |2k2,`1 · f×(p−2k)(h).

Hence by theorem 15.6(b),

Eηp(f×p) =
[p/2]∑
k=0

(−1)kEξp−2k [(f×p)pk]

=
[p/2]∑
k=0

(−1)k
(
p

2k

)
α2k|f |2k2,`1Eξp−2k [f×(p−2k)]

=
[p/2]∑
k=0

(−1)k
(
p

2k

)
α2k|f |2k2,`1{Eξ1(f)}p−2k, by corollary 14.11

=: Hp{Eξ1(f), |f |22,`1}.
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On combining this theorem with Ito’s factorization theorem 14.20, we get imme-
diately Ito’s second important theorem:

16.5. Corollary. (Ito 1951, theorem 3.1) Let f1, . . . , fn ∈ L2(R) be ⊥. Then
∀p1, . . . , pn ∈ N+,

Eηp1+···+pn

( n×
i=1

f×pii

)
=

n∏
i=1

Hpi{Eη1(fi), |fi|22,`1}.

Proof. By 14.20 and 16.4, we have

LHS =
n∏
i=1

Eηpi (f
×pi
i ) = RHS.

An obvious special case of this, easily proved by taking fi = χDi and noting that
η1 = ξ1, is the following set theoretic analogue of 16.5:

16.6. Corollary. Let D1, . . . , Dn ∈ D1 be ‖. Then ∀p1, . . . , pn ∈ N+,

ηp1+···+pn

( n×
i=1

Dpi
i

)
= Eηp1+···+pn

( n×
i=1

χ×piDi

)
=

n∏
i=1

Hpi{ξ1(Di), `1(Di)}.

16.7. Corollary. (Kakutani 1950, theorem 1) For all p ∈ N0+, ∃ a subspace
Mp ⊆ Lξ2 such that

Lξ2 =
∞∑
p=0

Mp, Mp ⊥Mq, p 6= q,

and ∃ an isometry Wp onMp onto Lsym
2 (Rp). Moreover, cf. (1950, p. 322, (17), (18)),

∀n ∈ N+, ∀‖D1, . . . , Dn ∈ D1 & ∀p1, . . . , pn ∈ N+ such that p1 + · · · + pn = p, we
have

Wp

{ n∏
i=1

Hpi{ξ1(Di), `1(Di)}
}

=
√
p!

n×
i=1

χ×piDi
.

Proof. Define Mp := Sηp & Wp :=
√
p!E−1

ηp
. Then by (9.20) and 9.8(c),

Lξ2 =
∞∑
p=0

Mp & Mp ⊥Mq, p 6= q.

Also by (10.7),

Wp = ((1/
√
p!)Eηp)−1 is an isometry on Sηp , i.e. on Mp, onto Lsym

2 (Rp).

Finally by the last corollary 16.6,

Wp

{ n∏
i=1

Hpi{ξ1(Di), `1(Di)}
}

=
√
p!E−1

ηp

{ n∏
i=1

Hpi{ξ1(Di), `1(Di)}
}

=
√
p!

n×
i=1

χ×piDi
.
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Note. Kakutani’s theorem 1 (1950) also asserts that Ut(Mp) =Mp, where (Ut, t ∈
R) is the unitary group acting over L2, induced by the P-measure preserving flow of
Brownian motion over Ω. This is easy to show in the context of this paper, the crux
being the equality

Ut{ξp(D)} = ξp{D + (t, . . . , t)}, D ∈ Dp, t ∈ R & (t, . . . , t) ∈ Rp,
which we can prove. Obviously this equality also holds for ηp, and shows that
Ut(Sηp) = Sηp .

Introducing the abbreviations:

∀p ∈ N0+ & ∀f ∈ L2(R), hp(f) := Hp{Eξ1(f), |f |2,`1},(16.8)

the equality in 16.4 can be paraphrased as:

∀f ∈ L2(R) & ∀p ∈ N+, Eηp(f×p) = hp(f).(16.9)

Also the equality in 16.5 can be written:
∀ orthogonal sets {f1, . . . , fp} ⊆ L2(R) & ∀p1, . . . , pn ∈ N+,

Eηp1+···+pn

( n×
i=1

f×pii

)
=

n∏
i=1

hpi(fi).
(16.10)

So far in this paper no orthonormal (o.n.) or other basis has been used, our treat-
ment being coordinate free. We now proceed to show that each o.n. basis in L2(R)
induces, via the Hermite polynomials, an o.n. basis in Sηp , for each p ∈ N+, and
thereby induces an o.n. basis in Lξ2 itself. This will allow us to deduce from our
previously proved results an important theorem first proved by Cameron & Martin
(1947, theorem 1).

Since ∀f1, . . . , fp, g1, . . . , gp ∈ L2(R), we obviously have

(f1 × · · · × fp, g1 × · · · × gp)L2(Rp) =
p∏
k=1

(fk, gk)L2(R).

we immediately infer the following:

16.11. Triviality. Let (fn)∞n=0 be an o.n. basis for L2(R). Then ∀p ∈ N+,

((fk1 × · · · × fkp : (k1, . . . , kp) ∈ Np0+) is an o.n. basis for L2(Rp)).

As to the symmetrization of this basis, it is easily checked that with the fn as in
16.11, we have 

∀(k1, . . . , kp) & (j1, . . . , jp) ∈ Np0+,

either (fk1 × · · · × fkp)˜ = (fj1 × · · · × fjp)˜
or (fk1 × · · · × fkp)˜ ⊥ (fj1 × · · · × fjp)˜.

(16.12)

Also
∀(k1, . . . , kp) ∈ Np0+, |(fk1 × · · · × fkp)˜|22,`p = 1/p!.(16.13)

The upshot of (16.12) and (16.13) and of the fact that for f =
∑

j∈J cjgj , we have
f̃ =

∑
j∈J cj g̃j , is the following lemma:
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16.14. Lemma. Let (fk)∞k=0 be an o.n. basis for L2(R) and p ∈ N+. Then

(
√
p!(fk1 × · · · × fkp)˜ : (k1, . . . , kp) ∈ Np0+) is an o.n. basis for Lsym

2 (Rp).

This basis yields via the isometry (1/
√
p!)Eηp an o.n. basis for Sηk . To exhibit this

basis conveniently, we shall adopt the following abbreviations:
(a) ∀r ∈ N+, [r] := {(j1, . . . , jr) : j1, . . . , jr ∈ N0+ & j1 < · · · < jr};
(b) ∀r, p ∈ N+, {r}p := {(p1, . . . , pr) : p1, . . . , pr ∈ N+

& p1 + · · ·+ pr = p}.
(16.15)

The theorem in question then reads:

16.16. Theorem. Let p ∈ N+ and (fk)∞k=0 be an o.n. basis for L2(R). Then( r∏
α=1

hpα(fjα) : r ∈ [1, p], (j1, . . . , jr) ∈ [r] & (p1, . . . , pr) ∈ {r}p
)

is an o.n. basis for Sηp .
Proof. By (10.7), (1/

√
p!)Eηp is an isometry on Lsym

2 (Rp) onto Sηp . Hence from
lemma 16.14,(

1√
p!
Eηp [
√
p!(fk1×· · ·×fkp)˜] : (k1, . . . , kp) ∈ Np0+

)
is an o.n. basis for Sηp .(1)

Now the k1, . . . , kp in (1) need not be distinct. Let

Range(k1, . . . , kp) = {j1, . . . , jr} where j1 < · · · < jr,(2)

and let ∀α ∈ [1, r], pα be the frequency of occurrence of jα in (k1, . . . , kp), so that

r ∈ [1, p], p1, . . . , pr ∈ N+ & p1 + · · ·+ pr = p.(3)

Obviously, ∃φ ∈ Perm(p) 3
(kφ(1) , . . . , kφ(p)) = (j1, . . . , j1, j2, . . . , j2, . . . , jr, . . . , jr),

where j1 is repeated p1 times, j2 repeated p2 times, and so on. It follows that

(fk1 × · · · × fkp)φ
−1

= (fkφ(1) × · · · × fkφ(p)) = f×p1
j1
× · · · × f×prjr

.(4)

But
1√
p!
Eηp [
√
p!(fk1 × · · · × fkp)˜] = Eηp(fk1 × · · · × fkp) by 10.3(c)

= Eηp{(fk1 × · · · × fkp)φ
−1} by 9.13(f) & A.35(c)

= Eηp{f×p1
j1
× · · · × f×prjr

} by (4).

But by (3), the orthogonality of fj1 , . . . , fjp , and (16.10), the last integral is
r∏

α=1

hpα(fjα).

Thus
1√
p!
Eηp [
√
p!(fk1 × · · · × fkp)˜] =

r∏
α=1

hpα(fjα).(5)
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Finally, by (2) and (3),

(j1, . . . , jr) ∈ [r] & (p1, . . . , pr) ∈ {r}p.(6)

Substituting from (5) and (6) in (1), we get the desired expression for the basis.

16.17. Corollary. Let (fk)∞k=0 be an o.n. basis for L2(R). Then( r∏
α=1

hpα(fjα) : r ∈ N+, (j1, . . . , jr) ∈ [r] & p1, . . . , pr ∈ N+

)
is an o.n. basis for Lξ2, cf. definition (8.11).

Proof. By (9.20) we have the orthogonal decomposition Lξ2 =
∑∞

p=0 Sηp . Hence an
o.n. basis for Lξ2 is obtainable by uniting the o.n. bases of all the Sηp . Thus from the
last theorem we infer that

∞⋃
p=0

{ r∏
α=1

hpα(fjα) : r ∈ [1, p], (j1, . . . , jr) ∈ [r] & (p1, . . . , pr) ∈ {r}p
}

is an o.n. basis for Lξ2. But now since p can be any non-negative integer, the conditions
r ∈ [1, p] and p1 + · · · + pr = p are fulfilled by all r ∈ N+. Hence the last basis can
be restated as in the enunciation.

Expansion in terms of the last o.n. basis yields the following:

16.18. Corollary. (Fourier Hermite series) Let (i) (fk)∞k=0 be an o.n. basis for
L2(R), (ii) ∀x ∈ Lξ2, ∀n ∈ N+, ∀(j1, . . . , jr) ∈ [r] & ∀p1, . . . , pr ∈ N+,

cp1,...,pr
j1,...,jr

(x) :=
(
x,

r∏
α=1

hpα(fjα)
)
L2

.

Then

x =
∞∑
r=1

∑
(j1,...,jr)∈[r]

∞∑
p1=1

. . .
∞∑
pr=1

cp1,...,pr
j1,...,jr

(x) ·
r∏

α=1

hpα(fjα).

16.19. Remarks. 1. The corollaries 16.17 and 16.18 constitute the theorem 1 of
Cameron & Martin (1947). It is deduced from the isometry of (1/

√
p!)Eηp , cf. 10.5(c),

and the important equality 16.5 due to Ito (1951, theorem 3.1).
2. In our approach, unlike Ito’s (who uses the Cameron–Martin theorem 1 to prove

the so-called Wiener–Ito expansion (Ito 1951, theorem 4.2), i.e. prove our corollary
11.2), the o.n. bases and the Cameron–Martin results come at the end. In this respect
our approach is close to Wiener’s, who too needed the Cameron–Martin results last,
in order to develop the theory of the analysis and synthesis of nonlinear transducers
(Wiener 1958, lectures 10, 11). This important application of the Cameron–Martin
theorem by Wiener has already been discussed in Masani (1966, pp. 113–118), and
need not engage us here.

Appendix A. Integrability and integration with respect to a vector
measure ρ

In this appendix we review the theory of integrability and integration with respect
to a measure ρ with values in a Hilbert space H. In the special case H = R or
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H = C, the definitions and results reduce to those of the classical scalar theory, and
for the case H = L2, they provide what is needed in this paper. We first recall some
fundamental ideas of vector-measure theory that we will need. In the sequel

H is a Hilbert space over R or C,
D is a δ-ring over a space Λ, ρ ∈ CA(D,H),
Dloc := {A : A ⊆ Λ & ∀D ∈ D, A ∩D ∈ D}.

(A.1)

A.2. Definition. A set A is called ρ-negligible, in symbols A ∈ Nρ, iff

A ∈ Dloc & ∀D ∈ D, ρ(D ∩A) = 0.

C is called a carrier of ρ, iff

C ∈ Dloc & ∀D ∈ D, ρ(D) = ρ(D ∩ C).

A.3. Definition. ∀A ∈ Dloc, let

ΠA := {π : π is a finite class of ‖ sets in D ∩ 2A}.
(a) The quasi-variation qρ(·) of ρ is the function on Dloc defined by ∀A ∈ Dloc,

qρ(A) := sup{|ρ(∆)|H : ∆ ∈ D ∩ 2A}.
(b) The semi-variation sρ(·) of ρ is the function on A ∈ Dloc defined by: ∀A ∈ Dloc,

sρ(A) := sup
{∣∣∣∣∑

∆∈π
α(∆)ρ(∆)

∣∣∣∣
H

: π ∈ ΠA, α ∈ Fπ & |α(·)| 6 1
}
.

The properties of qρ(·) and sρ(·) are given in [MN, II, §§ 3.2–3.4]. An especially
useful result is

∀A ∈ Dloc, qρ(A) 6 sρ(A) = sup
x∈H′
|x′|61

|x′ ◦ ρ|(A) 6 2qρ(A),(A.4)

where |σ|(·) is the total variation measure of any vector measure σ(·). It is easy to
see that for H = R or C, qρ = sρ = |ρ|. Another useful relation is that

Nρ = {A : A ∈ Dloc & sρ(A) = 0}.(A.5)

Very important is the family

Dρ := {A : A ∈ Dloc & sρ(A) <∞}.(A.6)

A useful lemma is the following, cf. [MN, II, 5.9 and III, C.20]:

A.7. Lemma. (a) D ⊆ Dρ ⊆ Dloc = Dloc
ρ & Dρ is a δ-ring.

(b) If (En)∞1 in Dρ is such that limn→∞En exists and equals E ∈ Dρ, then

lim
n→∞

sρ(En) = sρ(E) ∈ R+0;

(c) the following conditions are equivalent:
(α) A ∈ Dρ,
(β) A ∈ Dloc & ∃ ↑ sequence (∆k)k=1 in D ∩ 2A such that

sρ(A\∆k)→ 0, as k →∞.
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Finally we need a result from general vector measure theory (cf. Dinculeanu 1953,
p. 24, Prop. 6):

A.8. Identity principle. Let (i) P be a pre-ring over Λ and D = δ-ring(P), (ii) X be
a Banach space, (iii) ξ, η ∈ CA(D,X ). Then

ξ = η on P =⇒ ξ = η on D.

To turn to integrability, the measure ρ allows us to associate numbers in [0,∞]
with each real-valued Dloc measurable f on Λ:

∀f ∈M(Dloc,B1) & ∀x ∈ H′, |f |1,x′◦ρ :=
∫

Λ
|f(λ)| · |x′ ◦ ρ| (dλ),

∀f ∈M(Dloc,B1), |f |1,ρ := sup
x∈H′
|x′|61

|f |1,x′◦ρ,
(A.9)

and to define the class of Gelfand ρ-integrable functions:

G1,ρ = {f : f ∈M(Dloc,B1) & ∀x′ ∈ H′, |f |1,x′◦ρ <∞}.(A.10)

It is a fundamental result, cf. [MN, II, 3.13(a)] that:

A.11. Theorem. (a) G1,ρ = {f : f ∈M(Dloc,B1) & |f |1,ρ <∞};
(b) G1,ρ is a Banach space under the norm | · |1,ρ when functions f , g in G1,ρ such

that supp(f − g) ∈ Nρ are identified; f ∈ G1,ρ =⇒ |f(·)| ∈ G1,ρ.

Letting for any non-void family F of subsets of Λ,

S (F ,R) := the class of F-simple functions on Λ to R,(A.12)

it follows trivially that
S (D,R) ⊆ G1,ρ.(A.13)

We define the class of Lebesgue–Pettis13 ρ-integrable functions by

P1,ρ := cls S (D,R) in G1,ρ.(A.14)

The following two results on convergence in G1,ρ, i.e. under the norm |·|1,ρ, are cru-
cial (cf. [MN, III, C.2 and C.18]). The first is on the almost-everywhere convergence
of subsequences of mean convergent sequences:

A.15. Corollary. Let (fn)∞n=1 and f be in G1,ρ and |fn − f |1,ρ → 0, as n → ∞.
Then there exists a subsequence (fnk)∞k=1 & ∃N ∈ Nρ such that

∀λ ∈ Λ\N, fnk(λ)→ f(λ), as k →∞.

The second result prescribes conditions sufficient to ensure mean convergence:

A.16. Theorem. Let (i) (fn)∞1 be a sequence in P1,ρ, (ii) |fn(·)| 6 g(·) ∈ P1,ρ, and
(iii) fn(·)→ f(·) on Λ as n→∞. Then |fn − f |1,ρ → 0 as n→∞, i.e. fn tends to f
in the Banach space G1,ρ; moreover, f ∈ P1,ρ.

The previous results depend only on H being a Banach space. But since H is in

13 On the issue of the appropriateness of the appellations ‘Lebesgue’ or ‘Pettis’, see [MN, II, remarks
4.15]. As for the lettering G and P, see footnote 2.
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fact a Hilbert space and therefore weakly Σ-complete, we have (cf. Masani & Niemi
1989):

P1,ρ = G1,ρ.(A.17)
From (A.17) follows easily the Domination Principle:

f ∈M(Dloc,B1) & |f(·)| 6 φ ∈ P1,ρ =⇒ f ∈ P1,ρ.(A.18)

In particular,

f ∈M(Dloc,B1) is bounded & supp f ⊆ D ∈ D =⇒ f ∈ P1,ξ.(A.19)

From (A.17) it is also easily seen that

Dρ = {A : A ∈ Dloc & χA ∈ P1,ρ}, cf. (A.6).(A.20)

This in turn reveals the nature of Dρ-simple integrable functions:

S (Dloc,R) ∩ P1,ρ = S (Dρ,R).(A.21)

We can now attend to the approximation of integrable functions by Dρ and D
simple ones. From (A.21) and the Dloc-simple approximatability of Dloc-measurable
functions, we easily get:

A.22. Triviality. (Dρ-simple approximation) Let f ∈ P1,ρ. Then ∃ a sequence
(sn)∞1 in S (Dρ,R) such that

sn(·)→ f(·) & |sn(·)| ↑ |f(·)| on Λ & lim
n→∞

|sn − f |1,ρ = 0.

To turn to approximation by D-simple functions, the mean convergence asserted
in theorem A.24(a) below is obvious from (A.14). But the simultaneous fulfillment
of both statements asserted in A.24 requires careful proof. The following preliminary
result is needed.

A.23. Lemma. Let f ∈ S (Dρ,R). Then ∃ a sequence (gp)∞1 in S (D,R) such that
∀p ∈ N+, |gp(·)| 6 |f(·)| on Λ, and |gp − f |1,ρ < 1/p.

Proof. Let f =
∑r

k=1 akχAk , in standard form. Let M :=
∑r

k=1 |ak|. Then each
Ak ∈ Dρ. Hence by lemma A.7(c), ∀p ∈ N+, ∃Dp

k ∈ D ∩ 2Ak such that

∀k ∈ [1, r], sρ(Ak\Dp
k) < 1/(Mp).(1)

Define

∀p ∈ N+, gp :=
r∑

k=1

akχDp
k
.(2)

Then obviously gp ∈ S (D,R) and |gp(·)| 6 |f(·)| on Λ. Also, since f − gp =∑r
k=1 akχAk\Dpk , therefore by (1),

|f − gp|1,ρ 6
r∑

k=1

|ak| · |χAk\Dpk |1,ρ =
r∑

k=1

|ak|sρ(Ak\Dp
k) 6

1
p
.

A.24. Theorem. (D-simple function approximation) Let f ∈ P1,ρ. Then ∃ a
sequence (sn)∞n=1 in S (D,R) such that

(a) ∀n > 1, |sn(·)| 6 |f(·)| on Λ & limn→∞ |sn − f |1,ρ = 0;
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(b) ∃N ∈ Nρ such that ∀λ ∈ Λ\N , limn→∞ sn(λ) = f(λ).

Proof. Since f ∈M(Dloc,B1), therefore ∃(fn)∞1 in S (Dloc, B1) such that

fn(·)→ f(·) & |fn(·)| ↑ |f(·)| on Λ.(1)

It follows from (A.18) that each fn ∈ P1,ρ and from theorem A.16 that

|fn − f |1,ρ → 0, as n→∞.(2)

The equality (A.21) now tells us that

each fn ∈ S (Dρ,R).(3)

It follows from lemma A.23 that{
∀p ∈ N+, ∃(gpn)∞n=1 in S (D,R) 3 ∀n ∈ N+,

& |gpn(·)| 6 |fn(·)|, |gpn − fn|1,ρ < 1/2p.
(4)

Now let p ∈ N+. Then by (2), ∃np ∈ N+ such that

|fnp − f |1,ρ < 1/2p.

Hence by (4),

|gpnp − f |1,ρ 6 |gpnp − fnp |1,ρ + |fnp − f |1,ρ 6 1/p.

Also by (4), gpnp ∈ S (D,R), and by (4) and (1),

|gpnp(·)| 6 |fnp(·)| 6 |f(·)|.
Letting gp := gpnp , we have thus shown that

∃(gp)∞p=1 in S (D,R) 3 ∀p > 1, |gp(·)| 6 |f(·)| & |gp − f |1,ρ < 1/p.(5)

It follows from corollary A.15 that ∃N ∈ Nρ and ∃ a subsequence (gpn)∞n=1 such that

∀λ ∈ Λ\N, gpn(λ)→ f(λ) as n→∞.(6)

Defining ∀n ∈ N+, sn(·) = gpn(·), it is clear from (5) and (6) that the sequence
(sn)∞n=1 has both the properties (a), (b).

We turn next to integration with respect to ρ. This is to be understood as an
operator Eρ on the Banach space P1,ρ to the Hilbert space H. The definition of Eρ
is in two steps. First:

∀s :=
r∑

k=1

akχDk ∈ S (D,R), Eρ(s) :=
r∑

k=1

akρ(Dk) ∈ H.(A.25)

It follows easily that Eρ is a linear operator on the linear manifold S (Dp,R) to H,
which is a contraction, i.e.

∀s ∈ S (D,R), |Eρ(s)|H 6 |s|1,ρ.
Hence Eρ extends to a linear contraction on the cls S (Dp,R), i.e. on P1,ρ. We denote
this extension by the same symbol; thus

A.26. Definition. ∀f ∈ P1,ρ, Eρ(f) := limn→∞ Eρ(sn), where (sn)∞n=1 is any sequence
in S (D,F) such that |sn − f |1,ρ → 0, as n→∞. We also define the integral by∫

Rp
f(t)ρ (dt) := Eρ(f) ∈ H.
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We of course have
∀f ∈ P1,ρ, |Eρ(f)|H 6 |f |1,ρ.(A.27)

The most important result on integration is the following (cf. [MN, II, 4.5(c), III,
C.18]):

A.28. Theorem. (On dominated convergence) Let
(i) (fn)∞n=1 be a sequence in P1,ρ,
(ii) ∀n ∈ N+, |fn(·)| 6 g(·) ∈ P1,ρ,
(iii) ∃N ∈ Nρ 3 limn→∞ fn(·) = f(·) on Λ\N .
Then

f ∈ P1,ρ, lim
n→∞

|fn − f |1,ρ = 0 & Eρ(f) = lim
n→∞

Eρ(fn).

Another which we shall need relates to the linear manifold in H spanned by the
range of the measure ρ and the range of the linear operator Eρ. They have the same
closure (cf. [MN, Part II, 4.6]):

cls RangeEρ = Sρ := cls〈Range ρ〉.(A.29)

For two vector measures we have the following simple result:

A.30. Triviality. Let ρ, σ ∈ CA(D,H). Then
(a) ∀f ∈M(Dloc,B1), |f |1,ρ+σ 6 |f |1,ρ + |f |1,σ;
(b) P1,ρ ∩ P1,σ ⊆ P1,ρ+σ;
(c) ∀f ∈ P1,ρ ∩ P1,σ, Ep+σ(f) = Eρ(f) + Eσ(f).

Proof. (a) and (b) follow easily on applying the inequality for the total variation,
to wit |µ+ ν|(·) 6 |µ|(·) + |ν|(·), taking µ := x′ ◦ ρ, ν := x′ ◦σ, x′ ∈ H′. The equality
in (c) obviously prevails for D-simple f , and by a limiting argument can be shown
to hold for all f ∈ P1,ρ ∩ P1,σ.

The inclusion in A.30(b) sharpens to an equality when the ranges of the measures
ρ and σ are orthogonal.

A.31. Proposition. Let ρ, σ ∈ CA(D,H) & Sρ ⊥ Sσ. Then
(a) ∀f ∈M(Dloc,B1), max{|f |1,ρ, |f |1,σ} 6 |f |1,ρ+σ;
(b) P1,ρ+σ = P1,ρ ∩ P1,σ.

Proof. (a) Let f ∈M(Dloc,B1), x′ ∈ H′ & |x′| 6 1. Then ∃1x ∈ H such that

|x| 6 1 & ∀y ∈ H, x′(y) = (y, x)H.(1)

Since Sρ ⊥ Sσ, we see that

x = x0 + x1 + x2 where x0 ⊥ Sρ + Sσ, x1 ∈ Sρ & x2 ∈ Sσ.(2)

Let x′i ∈ H′ correspond to xi, i = 0, 1, 2, and grant momentarily that

|x′ ◦ ρ|(·) = |x′1 ◦ ρ|(·) on Dloc.(I)

∀x ∈ Sρ, |x′ ◦ ρ|(·) = |x′ ◦ (ρ+ σ)|(·) on Dloc.(II)
Then

|f |1,x′◦ρ = |f |1,x′1◦ρ & ∀x ∈ Sρ, |f |1,x′◦ρ = |f |1,x′◦(ρ+σ).(3)
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Since by (2), x1 ∈ Sρ, it follows from (3) that

|f |1,x′◦ρ = |f |1,x′1◦ρ = |f |1,x′1◦(ρ+σ)

6 |x′1| · |f |1,ρ+σ = |x1| · |f |1,ρ+σ 6 |x| · |f |1,ρ+σ 6 |f |1,ρ+σ.

This holds for any x ∈ H′ such that |x′| 6 1. Hence taking the supremum for |x′| 6 1
on the LHS, we get

|f |1,ρ 6 |f |1,ρ+σ.

Similarly, |f |1,σ 6 |f |1,ρ+σ. This establishes (a) except for the justification of (I) and
(II), which we shall leave to the reader.

(b) This follows readily on combining the inequalities in (a) and in A.30(a).

The integration Eρ has of course the following ‘Pettis property’ (as can be easily
shown). Let K be a Hilbert space over F and T ∈ CL(H,K). Then{

T ◦ ρ ∈ CA(D,K) & ∀f ∈ P1,ρ, f ∈ P1,T◦ρ & T{Eρ(f)} = ET◦ρ(f),
∀f ∈ P1,ρ & ∀x′ ∈ H′, x′{Eρ(f)} = Ex′◦ρ(f).

(A.32)

Now in the special case of interest, H = L2, it is a fundamental fact stemming from
the simple inequality

∀x ∈ L2, |EP(x)| 6 |x|L1 6 |x|L2 ,

that EP ∈ (L2)′. Hence from (A.32) we conclude that

when H = L2, ∀f ∈ P1,ρ, EP{Eρ(f)} = EEP◦ρ(f).(A.33)

We turn next to the invariance of Lebesgue Pettis ρ-integrability and ρ-integration
under ρ-measure-preserving transformations of Λ into Λ.

A.34. Triviality. Let (i) Λ, D be as in (A.1), (ii) φ be one–one on Λ onto Λ and
such that

∀D ∈ D, φ−1(D) & φ(D) ∈ D.
Then

φ & φ−1 ∈M(Dloc,Dloc).

We leave the simple proof to the reader.

A.35. Lemma. (Measure-preserving transformation) Let
(i) Λ, D & ρ be as in (A.1),
(ii) φ be one–one on Λ onto Λ such that ∀D ∈ D, φ−1(D) & φ(D) ∈ D,
(iii) φ & φ−1 be ρ-measure-preserving, i.e.

∀D ∈ D, ρ{φ−1(D)} = ρ(D) = ρ{φ(D)}.
Then

(a) ∀x′ ∈ H′, φ is |x′ ◦ ρ| measure-preserving, i.e.

∀A ∈ Dloc, |x′ ◦ ρ|{φ−1(A)} = |x′ ◦ ρ|(A);

(b) ∀f ∈M(Dloc,B1), f ∈ P1,ρ iff f ◦ φ ∈ P1,ρ;
(c) ∀f ∈ P1,ρ, Eρ(f ◦ φ) = Eρ(F ).

Proof. (a) Let x′ ∈ H′ and µ = x′ ◦ ρ ∈ CA(D,R). Then by (iii)

∀A ∈ Dloc, µ{φ−1(D)} = µ(D) = µ{φ(D)}.(1)
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Now let A ∈ Dloc. Then by A.34, φ−1(A) ∈ Dloc. Now clearly π = {∆1, . . . ,∆r} is
a D-partition of A if and only if π′ = {φ−1(∆1), . . . , φ−1(∆r)} is a D-partition of
φ−1(A). Hence by (1) ∑

∆′∈π′
µ(∆′) =

∑
∆∈π

µ(∆).

Taking the suprema, we get |µ|{φ−1(A)} = |µ|(A), i.e. we have (a).
(b) It follows from (a) classically that ∀f ∈M(Dloc,B1),∫

Λ
|(f ◦ φ)(t)| · |x′ ◦ ρ| (dt) =

∫
Λ
|f(t)| · |x′ ◦ ρ| (dt),

whence, cf. (A.9), |f ◦φ|1,ρ = |f |1,ρ. This entails by (A.17) and (A.10) the equivalence
(b).

(c) Let f ∈ P1,ρ, x′ ∈ H′ and µ := x′ ◦ ρ. Then f ∈ L1,µ. It therefore follows
classically from (1) that∫

Λ
f{φ(λ)}(x′ ◦ ρ) (dλ) =

∫
Λ
f(λ)(x′ ◦ ρ) (dλ).

As this holds ∀x′ ∈ H′, we have (c).

The concepts of ρ-integrability and ρ-integration allow us to define for each Dloc

measurable R-valued function f on Λ, an indefinite integral
∫
A
f(t)ρ (dt) for suitable

sets A. The formal definitions are as follows:

A.36. Definition. Let f ∈M(Dloc,B1). Then
(a) Dρ(f) := {A : A ∈ Dloc & fχA ∈ P1,ρ};
(b) ∀A ∈ Dρ(f), νρ,f (A) := Eρ(fχA).
The measure νρ,f is called the indefinite integral of f with respect to ρ.

As basic results, easily proved, we have
Dρ(f) is a δ-ring ⊆ Dloc & [Dρ(f)]loc = Dloc,

∀f ∈ P1,ρ, Dρ(f) = Dloc,

νρ,f (A) ∈ CA(Dρ(f),H).

(A.37)

A result of considerable importance is the following on the semi-variation of the
indefinite integral:

A.38. Theorem. ∀f ∈M(Dloc,B1), sνρ,f (Λ) = |f |1,ρ ∈ [0,∞).

Proof. Let f ∈M(Dloc,B1). Then by the equality in (A.4),

sνρ,f (Λ) = sup
x∈H′
|x′|61

|x′ ◦ νρ,f |(Λ).(1)

Now let x′ ∈ H′. Then by definitions A.36(b) and (A.32),

∀D ∈ Dρ(f), (x′ ◦ νρ,f )(D) =
∫

Λ
χD(λ) · f(λ) · (x′ ◦ ρ) (dλ).(2)

It follows from (2) and a basic result on scalar measures (cf. [MN, I, 2.32(a)]), that

|x′ ◦ νρ,f |(Λ) =
∫

Λ
|f(λ)| · |x′ ◦ ρ| (dλ) ∈ [0,∞].
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Substituting in (1), we get, cf. (A.9)

sνρ,f (Λ) = sup
x∈H′
|x′|61

∫
Λ
|f(λ)| · |x′ ◦ ρ| (dλ) =: |f |1,ρ.

This theorem yields the following corollary on the quasi- and semi-variations, which
is very useful for our purposes in §10:

A.39. Corollary. Let f ∈M(Dloc,B1). Then

sup
C∈Dρ(f)

|Eρ(fχC)| 6 |f |1,ρ 6 2 sup
C∈Dρ(f)

|Eρ(fχC)|.

Proof. Equation (A.4) tells us that

qνρ,f (Λ) 6 sνρ,f (Λ) 6 2qνρ,f (Λ).(1)

But by A.38, the middle term is |f |1,ρ. Also, since νρ,f ∈ CA(Dρ(f),R0+), therefore
by A.3(a),

qνρ,f (Λ) = sup
C∈Dρ(f)

|νρ,f (C)| := sup
C∈Dρ(f)

|Eρ(fχC)|.

Thus (1) reduces to the desired inequalities.

The indefinite integral νρ,f in the special case where f is constantly 1 on Λ is of
measure-theoretic importance. From definition A.36 and (A.20) we see at once that{

for f = 1 on Λ, Dρ(f) := {A : A ∈ Dloc & χA ∈ P1,ρ} = Dρ
& ∀A ∈ Dρ(f), νρ,f (A) = Eρ(χA).

(A.40)

For brevity we write ρ̄(A) instead of νρ,1(A). Obviously, cf. (A.37),

ρ ⊆ ρ̄ ∈ CA(D̄ρ,H).(A.41)

whence

∀B ∈ Dρ ∩ σ-ring(D), Dn ∈ D & Dn ↑ B =⇒ ρ̄(B) = lim
n→∞

ρ(Dn).(A.42)

It can be shown that ρ̄ is the maximal CA extension that ρ admits. In the very
special case that ρ = µ ∈ CA(D,R0+) it easily follows that

µ ⊆ µ̄ = Rstr.Dµ |µ| ⊆ |µ|.(A.43)

The next and final proposition is needed in the study of the Fubini theorem. Let
C, D be δ-rings over the sets S and T , ρ ∈ CA(C,L2) and σ ∈ CA(D,L2). Let

∀C ×D ∈ C × D, (ρ× σ)(C ×D) := ρ(C) · σ(D).

Then in general (ρ × σ)(C × D) 6∈ L2 & ρ × σ 6∈ CA(C × D,L2). For the ρ and
σ encountered in this paper, it turns out that ρ × σ is CA and extends to the
δ-ring(C × D). For such ρ, σ, the following result on the connection between the
negligibility classes Nρ, Nσ, Nρ×σ is useful.

A.44. Proposition. Let (i) C, D be δ-rings over S and T ,
(ii) ρ ∈ CA(C,L2), σ ∈ CA(D,L2),
(iii) ρ× σ ∈ CA{δ-ring(C × D),L2}.
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Then (Nρ ×Dloc) ∪ (Cloc ×Nσ) ⊆ Nρ×σ.

Proof. It will suffice to show that Nρ ×Dloc ⊆ Nρ×σ, i.e. that

∀N ∈ Nρ & ∀B ∈ Dloc, N ×B ∈ Nρ×σ.(I)

Proof of (I). Let R̂ = ring(C × D) and D̂ = δ-ring(C × D) and let

N ∈ Nρ & B ∈ Dloc.(1)

F := {F : F ∈ D̂ & (ρ× σ)[F ∩ (N ×B)] = 0}.(2)
We leave it to the reader to check that

(A) R̂ ⊆ F = a δ-monotone class.

Then as usual, F = D̂, i.e. by (2),

∀E ∈ D̂, (ρ× σ)[E ∩ (N ×B)] = 0.

Thus, cf. definition A.2, N × B ∈ Nρ×σ. This establishes (I) and shows that Nρ ×
Dloc ⊆ Nρ×σ.

Appendix B. Integration with respect to measures given by
Markovian kernels

Let X be a Banach space over R, p, q ∈ N+, σ ∈ CA(Dq,X ), and let the kernel
K(·, ·) on Dp ×Rq to R0+ be ‘Markovian’ in the wide sense that (i) for each h ∈ Rq,
K(·, h) ∈ CA(Dp,R0+),14 and (ii) for each D ∈ Dp, K(D, ·) ∈ P1,σ. It then easily
follows that

ρ(·) :=
∫
Rq
K(·, h)σ (dh) ∈ CA(Dp,X ).(1)

The question arises as to what precisely is the P1,ρ class and whether the integra-
tion Eρ obeys the equation:

∀f ∈ P1,ρ, Eρ(f) =
∫
Rq

{∫
Rp
f(t)K (dt, h)

}
σ (dh).(2)

The implication on (1) =⇒ (2) does prevail when the kernel K(·, ·) is an indefinite
integral, i.e. when

∀h ∈ Rq, K(D,h) =
∫
D

k(t, h)µ (dt),(3)

where µ ∈ CA(Dp,R0+) and k(·, ·) is on Rp × Rq to R0+. For then, from (1), we get

ρ(D) =
∫
Rq

{∫
D

k(t, h)µ (dt)
}
σ (dh)

=
∫
D

{∫
Rq
k(t, h)σ (dh)

}
µ (dt),(4)

by the vectorial Fubini theorem for the product measure σ × µ in [MN, III, 9.8(d)],

14 In ordinary Markoff theory, K(·, h) is required to be a probability measure (cf. Doob 1953, pp. 255,
613).
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the RHS(4) being the Pettis integral of an X -valued function. From (4) it moreover
follows by a substitution principle proved in [MN, IV (unpublished)] that

Eρ(f) =
∫
Rp
f(t)

{∫
Rq
k(t, h)σ (dh)

}
µ (dt)

=
∫
Rq

{∫
Rp
f(t)k(t, h)µ (dt)

}
σ (dh),

where the last equality again hails from the same Fubini theorem. By virtue of (3)
this can of course be written in the form (2). Thus with the stipulation (3) on
K(·, ·), the implication (1) =⇒ (2) emerges as a corollary of the vectorial Fubini and
substitution theorems.

The objective of this appendix is (i) to show that the implication (1) =⇒ (2) is valid
without any imposition onK(·, ·) beyond its wide sense Markovianness, provided that
the vector measure σ is subject to a rather stringent restraint. A related objective is
(ii) to identify the class P1,ρ when σ is so restrained. The restraint in question is so
stringent that most scalar and vector measures violate it. But, as we shall show at
the end of this appendix, the important measure ηq appearing in this paper satisfies
it, and this appendix is indispensable for the integration theory of Wiener’s measure
ξp.

Before we state the restraint on σ, it is convenient to dispose of the following
preliminary lemma, which validates the implication (1) =⇒ (2) for a non-negative
measure σ on Bq, and for integrals which can take the value ∞.

B.1. Preliminary lemma. Let (i) p, q ∈ N+, (ii) Λ (·, ·) be a ‘Markovian’ kernel
on Bp × Rq, i.e.

∀h ∈ Rq, Λ (·, h) ∈ CA(Bp, [0,∞]),

∀A ∈ Bp, Λ (A, ·) ∈M(Bq,B[0,∞]),

(iii) µ ∈ CA(Bq, [0,∞]), and (iv)

A ∈ Bp, ν(A) :=
∫
Rq

Λ(A, h)µ (dh).

Then (a) ν ∈ CA(Bp, [0,∞]);
(b) ∀f ∈M(Bp,B[0,∞]) (cf. p. 1185 for B[0,∞])∫

Rp
f(t)ν (dt) =

∫
Rq

{∫
Rp
f(t)Λ (dt, h)

}
µ (dh) ∈ [0,∞].

Proof. (a) Let ∀k ∈ N+, Ak ∈ Bp be ‖ and A =
⋃∞
k=1Ak. Then by (ii), ∀h ∈ Rq,

Λ(A, h) =
∑∞

k=1 Λ(Ak, h), whence by (iv),

ν(A) =
∫
Rq

{ ∞∑
k=1

Λ(Ak, h)
}
µ (dh) =

∞∑
k=1

ν(Ak).

Thus (a).
(b) First let f =

∑r
i=1 aiχAi ∈ S (Bp,R0+). Then by (iv),

Eν(f) =
r∑
i=1

aiν(Ai) =
r∑
i=1

ai

∫
Rq

Λ(Ai, h)µ (dh) =
∫
Rq

{ r∑
i=1

aiΛ(Ai, h)
}
µ (dh).
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Since the integrand is
∫
Rp f(t)Λ (dt, h), we have the desired equality for simple f .

Next, let f ∈M(Bp,B(R0+)). Then there exists a sequence (sn)∞n=1 in S (Bp,B(R0+))
such that sn ↑ f on Rp. Then a straightforward argument involving three applications
of the monotone convergence theorem yields (b).

We now state the restraint on σ. Guided by the uses we have in mind, we shall
take X , the range of σ, to be a Hilbert space. Accordingly, we shall formulate the
restraint as follows:

H is a Hilbert space over R
σ ∈ CA(Dq,H) is such that ∃c ∈ R+ 3

∀g > 0 in P1,σ, |g|1,σ 6 c|Eσ(g)|H.
(B.2)

The properties we assign to the Markovian kernels K(·, ·) are the following, where
p, q ∈ N+: 

(i) K(·, ·) is a function on Dp × Rq to R0+,

(ii) ∀h ∈ Rq, K(·, h) ∈ CA(Dp,R0+),
(iii) ∀D ∈ Dp, K(D, ·) ∈ P1,σ, where σ is as in (B.2),
(iv) ∀D ∈ Dsym

p , K(D, ·) is symmetric on Rq to R0+.

(B.3)

The symbol |K|(·, h) will denote the total variation measure of the measure K(·, h).
The analogues of the properties (B.2), (ii)–(iv), for |K|(·, ·) are given in the next
result, the simple proof of which we leave to the reader:

B.4. Triviality. Let K(·, ·) be as in (B.3), and ∀h ∈ Rq, |K|(·, h) be the total
variation measure of K(·, h). Then

(a) |K|(·, ·) is a function on Bp × Rq to [0,∞];
(b) ∀h ∈ Rq, |K|(·, h) ∈ CA(Bp, [0,∞]);
(c) ∀B ∈ Bp, |K|(B, ·) ∈M(Bq,B[0,∞]);
(d) ∀B ∈ Bsym

p , |K|(B, ·) is symmetric on Rq to [0,∞].

Our derivation of (2) from (1) is heavily dependent on the extension ρ̄ of ρ on the
augmented δ-ring (Dp)ρ, cf. A.6. These two entities must therefore first engage our
attention. For them we have the:

B.5. Main lemma. Let
(i) H, σ be as in (B.2) and K(·, ·) be as in (B.3),
(ii) ∀D ∈ Dp, ρ(D) :=

∫
Rq K(D,h)σ (dh).

Then
(a) ρ ∈ CA(Dp,H);
(b) ∀x′ ∈ H′ & ∀B ∈ Bp,

|x′ ◦ ρ|(B) 6
∫
Rq
|K|(B, h) · |x′ · σ| (dt) ∈ [0,∞];

(c) (Dp)ρ = {B : B ∈ Bp & |K|(B, ·) ∈ P1,σ};
(d) ∀B ∈ (Dp)ρ, ρ̄(B) =

∫
Rq |K|(B, h)σ (dh).

Proof. (a) From (B.3)(ii), and (ii), it is clear that

ρ ∈ FA(Dp,H).(1)
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Next let ∀n ∈ N+, Dn ∈ Dp & Dn ↓ ∅. Then by (B.3)(ii), (iii), ∀h ∈ Rq,
K(Dn, h) ↓ 0 & ∀n ∈ N+, K(Dn, ·) 6 K(D1, ·) ∈ P1,σ.(2)

By (2) and the dominated convergence theorem A.28,

ρ(Dn) :=
∫
Rq
K(Dn, h)σ (dh)→

∫
Rq

0σ (dh) = 0, as n→∞.(3)

By (1), (3) and the Kolmogorov condition, we have (a).
(b) Let x′ ∈ H′ and first let D ∈ Dp. Then

|(x′ ◦ ρ)(D)| =
∣∣∣∣ ∫
Rq
K(D,h)(x′ ◦ σ) (dh)

∣∣∣∣
whence it follows easily that

|x′ ◦ ρ|(D) 6
∫
Rq
K(D,h)|x′ ◦ σ| (dh).

Next let B ∈ Bp and Dn ∈ Dp & Dn ↑ B. Then, using the monotone convergence
theorem:

|x′ ◦ ρ|(B) = lim
n→∞

|x′ ◦ ρ|(Dn) 6
∫
Rq
|K|(B, h) · |x′ ◦ σ| (dh) 6∞.

Thus (b).
(c) Let B ∈ Bp. Then we have to show that

B ∈ (Dp)ρ ⇐⇒ |K|(B, ·) ∈ P1,σ.(I)

Proof of (I). Let B ∈ (Dp)ρ. Then by (A.6), sρ(B) <∞, and by (A.42), for Dn in
Dp such that Dn ↑ B, we have

ρ̄(B) = lim
n→∞

ρ(Dn) ∈ H.(4)

Also,
|K|(B, h) = lim

n→∞
K(Dn, h) ∈ [0,∞].(5)

Now by (B.3), each K(Dn, ·) > 0 and K(Dn, ·) ∈ P1,σ. Hence by the crucial (B.2),

|K(Dn, ·)|1,σ 6 c · |Eσ{K(Dn, ·}| =: c|ρ(Dn)|.
Letting n→∞ in this, it follows from (5) and (4) that ||K|(B, ·)|1,σ 6 c|ρ̄(B)| <∞,
since B ∈ (Dp)ρ. Thus by A.11(a) and (A.17),

|K|(B, ·) ∈ P1,σ.

Next, let B ∈ Bp and |K|(B, ·) ∈ P1,σ. Then taking the sup|x′|61 in the two terms
in (b), we get

sρ(B) 6 ||K|(B, ·)|1,σ <∞, since |K|(B, ·) ∈ P1,σ.

Hence B ∈ (Dp)ρ. This establishes (I) and proves (c).
(d) Let B ∈ (Dp)ρ and let, as in (4), Dn ↑ B. Then, cf. A.42.

ρ̄(B) = lim
n→∞

ρ(Dn) := lim
n→∞

∫
Rq
K(Dn, h)σ (dh).(6)

By (5), K(Dn, ·)→ |K|(B, ·) & ∀n ∈ N+, |K(Dn, ·)| 6 |K|(Dn, ·) 6 |K|(B, ·). But by
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(c), |K|(B, ·) ∈ Pσ. Hence by the dominated convergence theorem A.28, (6) reduces
to

ρ̄(B) =
∫
Rp
|K|(B, h)σ (dh).

Thus (d).
We turn next to integration with respect to the measure ρ under consideration.

Paraphrased in terms of integration, the results B.5(c), (d) read:

∀B ∈ Bp, χB ∈ P1,ρ ⇐⇒
∫
Rp
χB(t)K (dt, ·) ∈ P1,σ,

and when χB ∈ P1,σ,∫
Rp
χB(t)ρ (dt) =

∫
Rq
|K|(B, h)σ (dh) =

∫
Rq

{∫
Rp
χB(t)K (dt, h)

}
σ (dh).

Our goal is to show, cf. B.8, that this result generalizes to arbitrary measurable f .
It is convenient to first dispose of the case of (Dp)ρ simple functions f :
B.6. Lemma. ((Dp)ρ simple f) Let (i) K and ρ be as in (B.3) and (B.5)(ii), and
(ii) f ∈ S {(Dp)ρ,R}. Then

(a) f̂(·) :=
∫
Rp f(t)K (dt, ·) ∈ P1,σ;

(b)
∫
Rp f(t)ρ (dt) =

∫
Rq f̂ (h)σ (dh);

(c) when f is symmetric on Rp, f̂ (·) is symmetric on Rq.
Proof. (a) We first assert that

∀B ∈ (Dp)ρ & ∀h ∈ Rq,
∫
Rp
χB(t)K (dt, h) = |K|(B, h) ∈ [0,∞].(I)

Proof of (I). It is a fundamental fact that for any non-negative CA measure ν
on a δ-ring D, ν ⊆ |ν| ∈ CA(Dloc, [0,∞]), and that Eν = E|ν|. Applying this to
ν = K (·, h) for h ∈ Rq, we have ∀h ∈ Rq,∫

Rp
χB(t)K (dt, h) =

∫
Rp
χB(t)|K| (dt, h) = |K|(B, h).

Thus (I).
Now let f =

∑r
i=1 aiχAi ∈ S ((Dp)ρ,R). Then by (I),

f̂(·) :=
∫
Rp
f(t)K (dt, ·) =

r∑
i=1

ai|K|(Ai, ·).(1)

Since Ai ∈ (Dp)ρ, therefore by the B.5(c), each |K|(Ai, ·) is in P1,σ. Hence so is the
sum f̂(·). Thus (a).

(b) We have∫
Rp
f(t)ρ (dt) =

r∑
i=1

ai

∫
Rp
χAi(t)ρ (dt) =

r∑
i=1

aiρ̄(Ai)

=
r∑
i=1

ai

∫
Rq
|K|(Ai, h)σ (dh), by B.5(d)

=
∫
Rq

{ r∑
i=1

ai|K|(Ai, h)
}
σ (dh) =

∫
Rq
f̂(h)σ (dh), by (1).

Thus (b).
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(c) When f is symmetric, then by (1.45), we can take each Ai ∈ Bsym
p . Hence by

B.4(d), each |K|(Ai, ·) is symmetric on Rq, and therefore by (1), so is f̂(·). Thus c.

It is also convenient to note the equivalence of the following conditions valid for
any measurable f :

B.7. Triviality. Let K and ρ be as in (B.3) and B.5(ii). Then the following condi-
tions are equivalent:

(α) f ∈M(Bp,B1) &

sup
x′∈H′
|x′|61

∫
Rq

{∫
Rp
|f(t)| ·K (dt, h)

}
|x′ ◦ σ| <∞,

(β) f ∈M(Bp,B1) & ∃N ∈ Nσ 3 ∀h ∈ Rq\N ,

f ∈ L1,K (·,h) &
∫
Rp
|f(t)|K (dt, ·) ∈ P1,σ.

Proof. Let (α) hold, and write

∀h ∈ Rq, Φ(h) :=
∫
Rp
|f(t)|K (dt, h) ∈ [0,∞]

and
N := {h : h ∈ Rq & Φ(h) =∞}.

Then (α) asserts that

sup
x′∈H′
|x′|61

∫
Rq

Φ(h)|x′ ◦ σ| (dh) <∞,

and from this it easily follows that sσ(N) = 0, i.e. N ∈ Nσ. Thus ∃N ∈ Nσ such
that ∀h ∈ Rq\N ,∫

Rp
|f(t)|K (dt, h) = Φ(h) <∞, i.e. f ∈ L1,K (·,h).(1)

Moreover, (α) tells us that |Φ|1,σ <∞, i.e.∫
Rp
|f(t)|K (dt, ·) = Φ(·) ∈ P1,σ, by A.11(a) and A.17.(2)

By (1) and (2), we have (β).
Next let (β) hold. Then (2) holds. Hence by A.17 and A.11(a),

∞ >

∣∣∣∣ ∫
Rp
|f(t)|K (dt, ·)

∣∣∣∣
1,σ

:= sup
x′∈H′
|x′|61

∫
Rq

∣∣∣∣ ∫
Rp
|f(t)|K (dt, h)

∣∣∣∣|x′ ◦ σ| (dh),

i.e. we have (α).

B.8. Main theorem. Let (i) p, q ∈ N+, (ii) the measure σ be as in (B.2) and the
kernel K (·, ·) as in (B.3), (iii)

∀D ∈ Dp, ρ (D) :=
∫
Rq
K(D,h)σ (dh).
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Then
(a)

P1,ρ =
{
f : f ∈M(Bp,B1) & ∃N ∈ Nσ 3 ∀h ∈ Rq\N,

f ∈ L1,K (·,h) &
∫
Rp
|f(t)|K (dt, ·) ∈ P1,σ

}
;

(b) for f ∈ P1,ρ & N as in (a), letting ∀h ∈ Rq\N , f̂(h) :=
∫
Rp f(t)K (dt, h), we

have
f̂ ∈ P1,σ & Eσ(f̂) = Eρ(f);

(c) when σ is permutation-invariant on Dq,
f is symmetric on Rp =⇒ ∃N̄ ∈ N sym

σ 3 f̂(·) is symmetric on Rq\N̄ .

Proof. (a) ⊆. Notice that the RHS(a) = {f : f satisfies B.7(β)}.
Case 1. Let f ∈ P1,ρ & f(·) > 0. Then by A.21, there exist (sn)∞n=1 in S {(Dp)ρ,R0+}

such that
0 6 sn(·) ↑ f(·) on Rp.(1)

Hence by the dominated convergence theorem A.28, and B.6(b),

Eρ(f) = lim
n→∞

Eρ(sn) = lim
n→∞

Eσ(ŝn).

Now since sn > 0 and K(·, ·) > 0, therefore

ŝn(·) :=
∫
Rp
sn(t)K (dt, ·) > 0.

Also by B.6(a), ŝn ∈ P1,σ. Hence by the crucial (B.2), |ŝn|1,σ 6 c|Eσ(ŝn)|. Thus

lim
n→∞

|ŝn|1,σ 6 c lim
n→∞

|Eρ(ŝn)| = c|Eσ(f)|.(2)

To evaluate the LHS(2), note that by (1) and the monotone convergence theorem,
as n→∞,

ŝn(h) :=
∫
Rp
sn(t)K (dt, h) ↑

∫
Rp
|f |(t)K (dt, h), h ∈ Rq.

Hence for a fixed x′ with |x′| 6 1, again by the monotone convergence theorem,∫
Rq

{∫
Rp
f(t)K (dt, h)

}
|x′ ◦ σ| (dh)

= lim
n→∞

∫
Rq
ŝn(h)|x′ ◦ σ| (dh)

6 lim
n→∞

sup
x′∈H′
|x′|61

∫
Rq
|ŝn(h)| · |x′ ◦ σ| (dh) = lim

n→∞
|ŝn|1,σ

6 c|Eσ(f)|, by (2).

Taking the supremium for |x′| 6 1 on the LHS, we get

sup
x′∈H′
|x′|61

∫
Rq

{∫
Rp
f(t)K (dt, h)

}
|x′ ◦ σ| (dh) 6 c|Eσ(f)|.
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But since f ∈ P1,ρ, the RHS <∞. Thus f satisfies B.7(α), and therefore the equiv-
alent B.7(β). Thus f ∈ RHS(a).

Case 2. Let f ∈ P1,ρ. Then by (A.15), |f(·)| ∈ P1,ρ and |f(·)| > 0. Hence by Case
1,

sup
x′∈H′
|x′|61

∫
Rq

{∫
Rp
|f(t)|K (dt, h)

}
|x′ ◦ σ| (dh) 6 c∞,

i.e. B.7(α) holds, and as before, f ∈ RHS(a). This completes the proof of ⊆.

Proof. (a) ⊇. Let f ∈ RHS(a). Then f satisfies B.7(β). Thus there exists N ∈ Nσ
such that ∀h ∈ Rq\N ,

f ∈ L1,K (·,h) &
∫
Rp
|f(t)|K (dt, ·) ∈ P1,σ.

It follows from (A.17) and A.11(a) that

β = sup
x′∈H′
|x′|61

∫
Rq

{∫
Rp
|f(t)|K (dt, h)

}
|x′ ◦ σ| (dh) <∞.(3)

To show that f ∈ P1,ρ, it will by (A.17) and A.10 suffice to show that

∀x′ ∈ H′,
∫
Rp
|f(t)| · |x′ ◦ ρ| (dt) <∞.(I)

Proof of (I). Let x′ ∈ H′. Then by (iii),

∀D ∈ Dp, (x′ ◦ ρ)(D) =
∫
Rq
K(D,h)(x′ ◦ σ) (dh),

whence by a routine argument,

∀B ∈ Bp, |x′ ◦ ρ|(B) 6
∫
Rq
|K|(B, h)|(x′ ◦ σ)| (dh) =: µx′(B), say.(4)

It follows from (4) that∫
Rp
|f(t)| · |x′ ◦ ρ| (dt) 6

∫
Rp
|f(t)|µx′ (dt) <∞.(5)

But by the definition of µx′ in (4) and lemma B.1(b),

RHS(5) =
∫
Rq

{∫
Rp
|f(t)| · |K|(dt, h)

}
|x′ ◦ σ| (dh) 6 β <∞, by (3).

Thus (5) reduces to (I). This finishes the proof of (a).
(b) With f ∈ P1,ρ and N as in (a), let ∀h ∈ Rq\N ,

(5′) f̂(h) :=
∫
Rp
f(t)K (dt, h).

First note that by B.6(a), (b),

∀s ∈ S ((Dp)ρ,R), ŝ ∈ P1,σ & Eρ(s) = Eσ(ŝ).(6)

Now since f ∈ P1,ρ, therefore by theorem A.22, there exist a sequence (sn)∞n=1 in
S ((Dp)ρ,R) such that

sn(·)→ f(·) & |sn(·)| ↑ |f(·)| on Rp.(7)
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By (7), the dominated convergence theorem A.28 and (6),

Eρ(f) = lim
n→∞

Eρ(sn) = lim
n→∞

Eσ(ŝn).(8)

Now let h ∈ Rq\N , where N is as in (a). Then since by (a), f ∈ L1,K(·,h), therefore
by (7) and Lebesgue’s dominated convergence theorem,

lim
n→∞

ŝn(h) := lim
n→∞

∫
Rp
sn(t)K (dt, h) =

∫
Rq
f(t)K (dt, h) = f̂(h).(9)

Moreover, by (7) and (a),

|ŝn(·)| :=
∣∣∣∣ ∫
Rp
sn(t)K (dt, ·)

∣∣∣∣ 6 ∫
Rp
|sn(t)|K (dt, ·)

6
∫
Rp
|f(t)|K (dt, ·) ∈ P1,σ.(10)

By (9), (10) and the dominated convergence theorem A.28,

Eσ(f̂) = lim
n→∞

Eσ(ŝn) = Eρ(f), by (8).

Thus (b).
(c) Let f be symmetric on Rp. Then by 1.44, we may assume that the sn in (7)

are symmetric. A repetition of (9), which recall holds for h ∈ Rq\N , yields

∃N ∈ Nσ 3 ∀h ∈ Rq\N, f̂(h) = lim
n→∞

ŝn(h), by (5′).(11)

Since σ is permutation invariant, ∀ψ ∈ Perm(q), Nψ ∈ Nσ, and so

N ⊆ Ñ :=
⋃

ψ∈Perm(q)

Nψ ∈ N sym
σ .

Since Rq\Ñ is symmetric, we conclude that ∀ψ ∈ Perm(q),

h ∈ Rq\Ñ ⇒ hψ ∈ Rq\Ñ ⊆ Rq\N
⇒ f̂(hψ) = lim

n→∞
ŝn(hψ) = lim

n→∞
ŝn(h) = f̂(h), by (11) and B.6(c).

Thus f̂ is symmetric on Rq\Ñ where Ñ ∈ N sym
σ . Thus (c).

Finally, let us note that the restriction (B.2) holds in the cases:

H = R & σ ∈ CA(Dq,R0+), with c = 1,

H = L2 & σ = ηq (definition 9.6) with c =
√
q!.

We have:

B.9. Lemma. (a) Let σ ∈ CA(Dq,R0+), f ∈ L1,σ and f(·) > 0 on Rq. Then
|f |1,σ = 1 · |Eσ(f)|.

(b) Let q ∈ N+, f ∈ P1,ηq and f(·) > 0 on Rq. Then |f |1,ηq 6
√
q! |Eηq(f)|L2 .

Proof. (a) This is utterly obvious since now σ ⊆ |σ̄|.
(b) Since f(·) > 0 on Rq, we see from 11.4(a) and 10.8 that

|f |1,ηq 6
√
q! |f |2,`q 6

√
q! |Eηp(f)|.
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Taking f = χD, D ∈ Dq, the restraint (B.2) reduces to sσ(D) 6 c|σ(D)|H. For
H = R, this further simplifies to

|σ|(D) 6 c|σ(D)|.
This inequality is violated by the simplest R-valued measures, for instance, by σ(D) =∑

k∈N+∩D(−1)k, D ∈ D1, for which |σ|(D) = #(N+ ∩D), and D = {1, 2} provides a
counter-example.

It is thus clear that most measures, scalar and vector, violate the restraint (B.2).
However, as B.9 shows, the measure ηq has the demanded ‘non-negativity’ typified in
the equality §1(3). For the measure ηq, the use of the implication (1)⇒ (2) enables
us to make a working principle out of the heuristic rule given in 12.8, and accordingly
plays an important role in the integration theory of Wiener’s measure ξp.

Appendix C. The ratio of finite sets of positive integers

Let B be a finite set of positive integers and A ⊆ B. To study the relations between
the (binary-celled) partitions in the classes ΠA and ΠB, when A and B have even
cardinality, cf. (1.16), we need to introduce a binary operation |, whereby A|B is
another finite set of positive integers.

C.1. Definition. Let (i) ∅ 6= A ⊆ B ⊆ [1, p],

(ii) B = {b1, b2, . . . , bβ}, where 1 6 b1 < b2 < · · · < bβ 6 p,
A = {bi1 , bi2 , . . . , biα}, where 1 6 i1 < i2 < · · · < iα 6 β.

Then we define the ratio A|B to be the set A|B := {i1, i2, . . . , iα}. For completeness
we let ∅|B := ∅.

As the cancellation in the equality in C.3 below indicates, we should think of | as
a division, and of the set A|B as the ratio of A over B. Obviously A|B ⊆ [1,#B] and
#(A|B) = #A. It is good to also consider the ratio (B\A)|B. We obviously have the
following lemma:

C.2. Lemma. Let ∅ 6= A ⊆ B ⊆ [1, p] & α := #A, β := #B. Then
(a) A|B, (B\A)|B ⊆ [1, β], #(A|B) = α, #{(B\A)|B} = #(B\A) = β − α;
(b) (B\A)|B = [1, β]\(A|B), (A|B) = [1, β]\{(B\A)|B};
(c) in case A = B, A|B = [1, β] & (B\A) = ∅.
Example. Let p = 12, A = {2, 6, 7, 10, 12} & B = {2, 5, 6, 7, 8, 9, 10, 12}. Then

α = 5, β = 8, A|B = {1, 3, 4, 7, 8} and (B\A)|B = {2, 5, 6}.
C.3. Lemma. Let (i) ∅ 6= A ⊆ B ⊆ [1, p] and (ii) P ∈ Pp. Then (PB)A|B = PA,
the notation being as in 1.9 and (1.34).

Proof. Let as in C.1,

B = {b1, b2, . . . , bβ} where 1 6 b1 < b2 < · · · < bβ 6 p,(1)

A = {bi1 , bi2 , . . . , biα} where 1 6 i1 < i2 < · · · < iα 6 β,(2)

and let P = P 1 × P 2 × · · · × P p, P k ∈ P1. Then by (1) and 1.35(b),

PB = P b1 × P b2 × · · · × P bβ = Q1 ×Q2 × · · · ×Qβ, say.
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Since A|B := {i1, i2, . . . , iα}, therefore,

(PB)A|B = (Q1 ×Q2 × · · · ×Qβ)A|B = Qi1 ×Qi2 × · · · ×Qiα
= P bi1 × P bi2 × · · · × P biα since Qk := P bk

=: PA, by (2) & 1.35(b).

Let B ⊆ [1, p] and #B = β. We claim that every subset J of [1, β] is a ratio (A|B)
for some subset A of B, and that this A is uniquely determined by B and J , thus:

C.4. Triviality. Let p ∈ N+ and ∅ 6= B ⊆ [1, p]. Then
(a) 2[1,#B] = {A|B : A ⊆ B};
(b) given J ⊆ [1,#B], ∃ exactly one A ⊆ B 3 J = A|B;
(c) ∀α ∈ [1,#B], {J : J ⊆ [1,#B] & #J = α} = {A|B : A ⊆ B & #A = α}.
Proof. (a) By C.1(ii), A|B ⊆ [1,#B]. Hence RHS(a) ⊆ LHS(a). Next let β := #B

and take a member J of the family on the LHS(a), say J = {j1, j2, . . . , jα}. Suppose
that B = {b1, b2, . . . , bβ}. Then obviously α 6 β, and taking A = {bjj , . . . , bjβ}, we
have by C.1, J = A|B. Thus LHS(a) ⊆ RHS(a). Thus (a).

(b) Let J = {j1, . . . , jα} ⊆ [1, β]. Then by (a), ∃A ⊆ B such that J = A|B. Let the
members of B and A be as in the previous paragraph. Now suppose ∃Â ⊆ B 3 Â|B =
J . Since Â ⊆ B, therefore ∃n ∈ [1, β] and ∃i1, . . . , in such that Â = {bi1 , bi2 , . . . , bin}
where 1 6 i1 < i2 < · · · < in 6 β. Thus

J = Â|B = {i1, . . . , in}.
Since J = {j1, . . . , jα}, it follows that n = α and i1 = j1, . . . , iα = jα, and therefore,

Â = {bi1 , bi2 , . . . , bin} = {bj1 , bj2 , . . . , bjα} = A.

Thus (b).
(c) Let J ⊆ [1, β]. Then by (b) ∃ exactly one A ⊆ B such that J = A|B. Now fix

α ∈ [1, β]. Then to prove (b) we have only to show that #J = α ⇐⇒ #A = α. But
this follows from C.2(a), since #J = #(A|B) = #A. Thus (c).

The next result comes in handy in establishing a connection between the canonical
coefficients γpk , γpj and γp−2j

k−j where 0 6 j 6 k 6 [p/2], cf. 15.3.

C.5. Lemma. Let (i) p ∈ N+ and f be a function on 2[1,p], (ii) C ⊆ [1, p] and
c := #C. Then

∀d ∈ N+ 3 c 6 d 6 p,
∑

J⊆[1,p−c]
#J=d−c

f(J) =
∑

C⊆D⊆[1,p]
#D=d

f{(D\C)|C ′},

where C ′ := [1, p]\C.

Proof. Let d ∈ N+ and c 6 d 6 p. It will suffice to show that

{J : J ⊆ [1, p− c] & #J = d− c} = {(D\C)|C ′ : C ⊆ D ⊆ [1, p] & #D = d}.(I)

For by (I) the two summations of the values of f in the lemma are over the same
subfamily of 2[1,p], and are therefore equal.

Proof of (I). Since #C ′ = p− c and d− c ∈ [1, p− c], therefore by C.4(c),

LHS(I) = {A|C ′ : A ⊆ C ′ & #A = d− c}.(1)
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Now let A ⊆ C ′ and A|C ′ ∈ RHS(1). Then A ⊆ C ′‖C and #A = d− c. Hence

D := A ∪ C ⊆ [1, p] & #D = #A+ #C = d.

Since trivially A = D\C, it follows that

RHS(1) = {(D\C)|C ′ : C ⊆ D ⊆ [1, p] & #D = d} = RHS(I).(2)

Combining (1) and (2) we get (I).

So far binary partitions have not entered into this appendix. Now letA ⊆ B ⊆ [1, p]
be such that #(B\A) = 2r is even. Then, by C.2(a), #{(B\A)|B} = 2r also, and
we can consider the classes of partitions ΠB\A and Π(B\A)|B. These classes have the
same cardinality α2r, cf. (1.17), and each partition in them has r cells. A one–one
correspondence on ΠB\A to Π(B\A)|B can be set up in many different ways. Now let
P ∈ Pp. Then since B\A ⊆ [1, p] and #(B\A) = 2r, it follows from (3.10) that

∀π ∈ ΠB\A, P (π) :=×
∆∈π

P (∆) ∈ Pr.

Also, PB ∈ P#B, (B\A)|B ⊆ B and #{(B\A)|B} = 2r. Hence, again by (3.10),

∀π̄ ∈ Π(B\A)|B, PB(π̄) :=×
∆∈π̄

PB(∆) ∈ Pr.

We proceed to show that corresponding to every π ∈ ΠB\A, there is a unique π̄ ∈
Π(B\A)|B such that ∀P ∈ Pp, PB(π̄) = P (π).

Let r ∈ [1, [p/2]] and π ∈ Π p
r . We shall apply the considerations of the last

paragraph, taking A = Mπ := ∗π∪π∗, and taking B to be such that Mπ ⊆ B ⊆ [1, p].
We wish to associate with π, a partition π̄ in Π #B

r such that Mπ̄ = Mπ|B. We have
the following result:

C.6. Triviality. Let (i) p ∈ N+ & r ∈ [1, [p/2]],
(ii) π = {∆1, . . . ,∆r} ∈ Π p

r ,
(iii) Mπ ⊆ B := {b1, . . . , bβ} ⊆ [1, p], b1 < · · · < bβ, β > 2r,
(iv) ∀k ∈ [1, r], min ∆k = bik & max ∆k = bjk ,
(v) π̄ := {{i1, j1}, . . . , {ir, jr}}.
Then (a) 1 6 i1 < · · · < ir; each {ik, jk} ⊆ [1, β] & π̄ ∈ Π β

r ;
(b) Mπ̄ = Mπ|B;
(c) ∀P ∈ Pp, PB(π̄) = P (π), where PB is as in (1.34).

Proof. By (iv) and (v),

bik = min ∆k < min ∆k+1 = bik+1 ,(1)

and by (iii)
bjk = max ∆k 6 maxB = bβ.(2)

Since by (iii), (b1, b2, . . . , bβ) is increasing, it follows from (1) and (2) that

∀k ∈ [1, r], ik < ik+1 & jk 6 β.
From this and (v), we have (a).

(b) By (iv),

Mπ =
r⋃

k=1

∆k = {bi1 , bj1 , . . . , bir , bjr} ⊆ {b1, . . . , bβ} = B.
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Hence by (v) and the definition C.1 of the division |,
Mπ̄ = {i1, j1, . . . , ir, jr} = Mπ|B.

Thus (b).
(c) Let P = P 1 × · · · × P p ∈ Pp. Then by (ii) and (iii),

Q := PB = P b1 × · · · × P bβ ∈ Pβ.(3)

Now by C.2, Mπ|B ⊆ [1, β], and by (b), Mπ̄ = Mπ|B. Hence by (3), (3.10) and (iv),

PB(π̄) = Q(π̄) = ×̄
∆∈π̄

Q(∆̄) =

r×
k=1

(Qik ∩Qjk)

=

r×
k=1

(P bik ×Qbjk ), since Qν = P bν , by (3)

=×
∆∈π̄

P (∆) = P (π), by (iv).

Thus (c).

C.7. Definition. Let p ∈ N+, r ∈ [1, [p/2]] & π ∈ Π p
r . Then ∀B such that Mπ ⊆ B ⊆

[1, p], the (unique) partition π̄ ∈ Π #B
r given in C.6(v) is called the canonical Mπ|B

associate of π. Thus, if

B = {b1, . . . , bβ} & b1 < · · · < bβ & π = {{bi1 , bj1}, . . . , {bir , bjr}},
then π̄ := {{i1, j1}, . . . , {ir, jr}}.

Note. Since Mπ̄ = Mπ|B, by C.6(b), therefore π̄ ∈ ΠMπ|B, and by C.6(c), PB(π̄) =
P (π).

Let A ⊆ B ⊆ [1, p] and #(B\A) be even. We shall now show that every partition
in Π(B\A)|B is the canonical associate of a partition in ΠB\A, i.e. that the canonical
correspondence is ‘onto’.

C.8. Proposition. Let (i) p ∈ N+ & r ∈ [1, [p/2]], (ii) A ⊆ B ⊆ [1, p] and #(B\A)
be even, (iii) π ∈ ΠB\A and π̄ ∈ Π(B\A)|B be the Mπ|B canonical associate of π.
Then

(a) Π(B\A)|B = {π̄ : π ∈ ΠB\A} = Π(B\A)|A′ , where A′ := [1, p]\A;
thus the canonical correspondence π → π̄ is one–one on ΠB\A onto Π(B\A)|B;

(b) ∀P ∈ Pp & ∀π ∈ ΠB\A, P (π) = PB(π̄).

Proof. (a) Let π ∈ ΠB\A. Then by C.6(b), Mπ̄ = Mπ|B = (B\A)|B, and therefore
π̄ ∈ Π(B\A)|B. Thus π ∈ ΠB\A =⇒ π̄ ∈ Π(B\A)|B.

To show the reverse implication, let

B = {b1, b2, . . . , bβ} where 1 6 b1 < b2 < · · · < bβ 6 p,(1)

B\A = {bi1 , bi2 , . . . , bi2r} where 1 6 i1 < i2 < · · · < i2r 6 β.(2)

Then by the definition of |,
(B\A)|B = {i1, i2, . . . , i2r}.(3)

Now let π′ ∈ Π(B\A)|B. Then by (3),

π′ = {{iµ1 , iν1}, {iµ2 , iν2}, . . . , {iµr , iνr}},(4)
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where

i1 6 iµ1 < iµ2 < · · · < iµr , & iµ1 < iν1 & . . . & iµr < iνr 6 i2r.(5)

{iµ1 , iν1 , . . . , iµr , iνr} = {i1, . . . , ir} = (B\A)|B.(6)
Now define

π := {{biµ1
, biν1}, {biµ2

, biν2}, . . . , {biµr , biνr }}.(7)
Then obviously from the inequalities in (1), (2) and (5),

bi1 6 biµ1
< biµ2

< · · · < biµr , & biµ1
< biν1 & . . . & biµr < biνr 6 b2r,

and by (6) and (3),

{biµ1
, biν1 , . . . , biµr , biνr } = {bi1 , . . . , bir} = (B\A)|B.

Hence by (7), π ∈ Π(B\A)|B.
It follows from (7) and C.6(v) that

π̄ = {{iµ1 , iν1}, {iµ2 , iν2}, . . . , {iµr , iνr}},(8)

i.e. by (4), π̄ = π′. We have thus shown that ∀π′ ∈ Π(B\A)|B, ∃π ∈ ΠB\A such that
π̄ = π′. This establishes the implication: π̄ ∈ Π(B\A)|B =⇒ π ∈ ΠB\A. Thus we have

π ∈ ΠB\A ⇐⇒ π̄ ∈ Π(B\A)|B,

which establishes the first equality in (a).
As for the second equality in (a), note that B\A − A′\B′, and B′ ⊆ A′ ⊆ [1, p].

Hence, applying the first equality,

Π(B\A)|A′ = Π(A′\B′)|A′ = {π̄ : π ∈ ΠA′\B′} = {π̄ : π ∈ ΠB′\A′}.
This proves (a)

(b) This just repeats C.6(c).

Index of notation

Symbol Location
:=, ∀, ∃, #(A), χA, ‖, ⊥ 1.1(a)
LHS, RHS 1.1(a)
Rstr.A f , F, R, C, N 1.1(a), (b)
R+, N+, R0+, N0+ 1.1(b)
(a, b], [a, b], [m,n] 1.1(c)
Rp, R0 1.1(d)
M(F ,G) 1.1(e)
〈A〉, cls, S(A) 1.1(f)
L(X,Y ), CL(X,Y ) 1.1(f)
FA(R, Y0), CA(R, Y0) 1.1(g)
Mξ, Sξ 1.1(g)
σ-alg(F), σ-ring(F), etc. 1.1(g)
Eξ(f) 1.1(h),

(A.25),
A.26

αp 1.1(i)
Dloc (1.3),

(A.1)
L2 (1.3)
CAOS(D,L2) 1.6
Dp, Bp, Pp, Rp, 1.9
`p, |`p|, D̄p 1.9
F synm 1.9
Rp (1.10)
ξp on Pp 1.13
ΠM , Π∅, π, ∗π, π∗ 1.16
Π p
k , Mπ, M ′π 1.16
×η

i=1Ai 1.30
℘M 1.31
℘M (A), ℘−1

M (A) 1.32
Perm(p) (1.36)
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tφ, Aφ
−1

1.37
fφ, f̃ 1.39
ξ0, `0 3.1
P (∆), P (π) (3.10)
anπ(P ) (3.11)
Γ pq
k (P,Q) 3.13
Ipij , I

p
1 , Rp∗ (4.1)

Spφ 4.2(b)
I(π, p) 4.3
Ipk (4.5)
Ipπ(h) 4.6
Apπ(h) 4.10
λpπ(D,h), γpk(D,h) 4.13
|λpπ|(·, h), |γpk |(·, h) 4.17
Γ pq
k (D,E) 5.1
ξp on Dp 5.6
ρ ≺≺ µ (5.14)
ξap(D), ξbp(D) (5.16)
φ-distortion of π 6.4
(φ, π)-permutation 6.4
M -extension ψ̄M 6.6
π-extension ψ̄π 6.6
πk (6.11)
φπ 6.12
[h]j,kα,β 7.2
0 ·A, 1 ·A, (A, a set) 7.4
Lξ2, (Lξ2)+, (Lξ2)− (8.11)

Aξ (8.13)
ηp,q, ζp,q (9.1)
ηp, ζp 9.6
ξp,k (9.15)
Jp+q1 (11.11)
◦

Π p+q
r 11.15

θpπ,h(τ), fpπ(τ, h), Jpπ,h 12.2
Hp
π(f) 12.9(d)

Hp
k (f), Mp

k 12.11
fpk (·), Mp

k (f) 12.11
For π ∈ Π p+q

r & i = 0, 1, 2 14.5
πi, Ai, τ i 14.5(a), (b)
h1, h2, ĥ1, ĥ2 14.5(a), (b)
[τ0, h

1], [τ0, h
2] (14.8)

Hp(u, σ) (16.2)
hp(f) (16.8)
qρ(A), sρ(A) A.3
Nρ (A.5)
Dρ (A.6)
|f |1,x′◦ρ, |f |1,ρ A.9
G1,ρ (A.10)
S (F ,R) (A.12)
P1,ρ (A.14)
Eρ(f) (A.25),

A.26
Dρ(f), νρ,f (A) A.36
A|B C.1

The writer is most grateful to the Royal Society for accepting its publication, and to Professor
C. R. Rao, F.R.S., for communicating it, and to the referee for his very careful comments.
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